[image: image104.png]

Virtual 3D Control Systems WWW Demonstrator based on Matlab

MEng Group Design Project

Virtual 3D Control Systems World Wide Web Demonstrator based on Matlab

Main Report

Team Members:

Clara Cardoso

Ian Farmer

Sam Hopper

Julian Seidenberg

Supervisor:

Dr S. M. Veres

Second Supervisor:

Prof. E. T. A. Rogers.

2001/2002

ABSTRACT

The birth of the Internet allowed and transformed the way connections and communications are made; it is used as a reference tool for commercial, personal and educational purposes. In the education field, this global net has the major advantage of being able to bring educators and students from around the world into one classroom. This remote access offers users the ability to uninterruptedly conduct laboratorial experiments, with minimal costs and risks of hazards, using equipment that otherwise may not be readily available. This project aimed to build a virtual laboratory for control systems demonstrations with three-dimensional illustrations of the experiments. Customers logging in over the World Wide Web can access these control systems simulations. The system was designed to target users interested in control systems from beginners to professionals, as the web page contains simple control experiments, such as a bouncing ball, a pendulum and more complicated ones, such as a Newton cradle, an F14 and a radar tracking system. Users can interact with these models by changing several experimental parameters. The web page designed used Simulink software from Matlab 6.1 (Mathworks, 2002) to develop the control simulations and a Java interface to command the connection of Simulink with the three-dimensional illustrations created using VRML (Web3D Consortium, 2002). The web pages were designed to be simple, so that the user does not have to understand the underlying systems, they, for instance, does not require plug-ins or additional downloads. The produced system is cross-platform, very accessible, user friendly, with acceptable performance when using a slow Internet connection and it uses a three-tier architecture to achieve better scalability than any other comparable system. In summary the system was produced so that it can be used by a variety of clients in numerous applications.

ACKNOWLEDGEMENTS

The team would like to thank Dr S.M. Veres our Project Supervisor, for his encouragement, advice and guidance throughout the project.

The team would like to thank Prof. Rogers, our Project Examiner, for his contributions.

Table of Contents

11. INTRODUCTION

21.1. Target audience

31.2. Methodology

31.3. Structure of the Report

41.4. Colour Key

52. ARCHITECTURE

52.1. Requirements Analysis

5Project Requirements

5Scenario Script View

6Use Case

82.2. Lifecycle

92.3. Architecture Overview

102.4. Architecture Detail

112.5. Subcomponent Development

122.6. Summary

12Advantages

13Disadvantages

143. SIMULINK MODELS

143.1. Introduction

153.2. Development

15Bouncing ball model

19RADAR tracking demonstration

21F14 Flight control

24Pendulum

28Newton’s Cradle

38Summary

394. SYSTEM TIMING AND CONTROL WRAPPER

394.1. Introduction

39Why Is Timing Important?

39The Timing and Control Interface

404.2. Development of the Timing and Control Interface

40Initial Timing Theory

44Simulink Timing and Control

46Final System Control Interface

484.3. Summary

495. JAVA CLIENT/SERVER SYSTEM

495.1. Introduction

49Objectives

50Technology Choice

535.2. Development

53High-Level Design

55Initial Low-Level Design

58Redesign

62Final Design

70Final Implementation

775.3. Summary

786. THREE-DIMENSIONAL ILLUSTRATIONS FOR THE CONTROL DEMONSTRATIONS

796.1. Software Overview

79Virtual Reality Modelling Language (VRML)

81Blaxxun3D

823DExploration

83Blender

84MilkShape3D

856.2. Developed Worlds

86Bouncing Ball

88Radar

90F14

91Newton’s Cradle

93Pendulum

956.3. Summary

967. INTEGRATION AND TESTING

967.1. Integration

98Bouncing ball model

99Radar tracking demonstration

99F14 Flight control

100Pendulum

100Newton’s cradle

1027.2. Testing the Simulation Timing and Execution

102Introduction

102The Test

103Evaluation of Test

1037.3. Java Client/Server System Testing

103Purpose

103Entry Criteria

104Test Scripts

108Test Results

110Evaluation of Test

1107.4. Performance/Load testing

1127.5. Fail-over Testing

1127.6. Usability testing

1127.7. Security testing

1137.8. Cross platform compatibility

1158. EVALUATION

1158.1. Comparison of Related Products

115Matlab Virtual Reality Toolbox 2.0

117Viewpoint

118LabView

119Comparison Chart

120Paper: Development of the Internet based control experiment (Yeung, Kin and Huang, Jie, 2001)

120Paper: A Virtual Laboratory Experience Based On A Double Tank Apparatus (Irawan, Remy, 2001)

121Paper: A Web-Based Laboratory on Control of a Two-Degree-of-Freedom Helicopter (Zhang, Jing and Chen, Jianping, 2001)

121Paper: Virtual Control Systems Laboratory (Navaratna, Channa, 2001)

1218.2. Size of download

1228.3. Evaluation

1259. CONCLUSIONS AND FUTURE WORK

1259.1. Conclusion

1269.2. Future Work

126Server

126Applet Client

127Matlab Client

127Matlab

127Simulink

1283D Worlds

129REFERENCES AND BIBLIOGRAPHY

Table of Appendices

APPENDIX A: Time Plan
APPENDIX B: Newton’s cradle output
APPENDIX C: Matlab Code
APPENDIX D: Java Platforms
APPENDIX E: System User Manual
APPENDIX F: Table of Contents for the CD-ROM
APPENDIX G: Agendas and minutes from the formal meetings
APPENDIX H: Project Financial Statement
Table of Figures

4Figure 1.1: Diagram Colour Key

7Figure 2.1: Use Case Diagram

8Figure 2.2: Waterfall with Subprojects

9Figure 2.3: Basic System Architecture

10Figure 2.4: Basic Technology Architecture

11Figure 2.5: Developmental Interactions

15Figure 3.1: Matlab demo - Tracking a bouncing ball

16Figure 3.2: Bouncing ball model

17Figure 3.3: Bouncing ball boundaries

18Figure 3.4: Output from simulation of ball motion

19Figure 3.5: Matlab demo – RADAR tracking demonstration

19Figure 3.6: RADAR Kalman filter

20Figure 3.7: Adapted Radar tracking model

21Figure 3.8: Typical output from RADAR tracking model

21Figure 3.9: Matlab demo - F14 flight control simulation

22Figure 3.10: Typical output from F14 model

23Figure 3.11: F14 controller model

23Figure 3.12: Adapted F14 controller model

24Figure 3.13: Adapted F14 model

25Figure 3.14: Matlab demo - Simple pendulum.

26Figure 3.15: A pendulum with air-resistance

27Figure 3.16: Pendulum equation realised in Simulink

27Figure 3.17: Motion of pendulum.

28Figure 3.18: Graphical representation of a 5 sphere Newton's Cradle

29Figure 3.19: Diagram showing factors involved in a two-sphere collision

32Figure 3.20: Two-sphere collision model

32Figure 3.21: Pendulum subsystem

33Figure 3.22: Collision detection subsystem

33Figure 3.23: Angular position of the two spheres and collision signal.

34Figure 3.24: Three sphere Newton's cradle model

35Figure 3.25: Trigger select subsystem

35Figure 3.26: Pendulum subsystem with (offset

36Figure 3.27 Sphere offsets

36Figure 3.28: Five sphere Newton's cradle model

37Figure 3.29: Magnified region of five sphere model

37Figure 3.30: Final velocity calculation subsystem.

41Figure 4.1: Timing results for the first Matlab timing test using pause(n)

42Figure 4.2: Simplified program flow diagram for second Matlab timing test

43Figure 4.3: Timing results for the second Matlab timing test using absolute times

43Figure 4.4: CPU Usage for second Matlab timing test

44Figure 4.5: CPU Usage for third Matlab timing test

45Figure 4.6: Simulink window for first Simulink timing test

46Figure 4.7: Timing results for the Simulink timing test (times in ms).

47Figure 4.8: Block diagram representation of high-level Simulink model.

53Figure 5.1: High-Level Design

54Figure 5.2: System Dataflow

56Figure 5.3: Initial Design Class Diagram

63Figure 5.4: Final Design Class Diagram

66Figure 5.5: Package Diagram

68Figure 5.6: Activity Diagram

70Figure 5.7: Matlab Interface Implementation

72Figure 5.8: Steps object deconstruction

73Figure 5.9: Conceptual JCB Client/Server interactions (Lee, Kent,1999)

74Figure 5.10: Java Control Applet implementation

76Figure 5.11: 3D Transformations

87Figure 6.1: A View of the Bouncing Ball World

88Figure 6.2: A Close-up of the Bouncing Ball World

89Figure 6.3: Superimposed Airplanes

89Figure 6.4: Radar World

91Figure 6.5: F14 World

92Figure 6.6: A view of the Newton’s Cradle World Showing the Newton’s Cradle

92Figure 6.7: A view of the Newton’s Cradle World Showing the Window

92Figure 6.8: Another view of the Newton’s Cradle World

93Figure 6.9: A View of the Pendulum World Showing the Pendulum Clock

94Figure 6.10: Another View of the Pendulum World

94Figure 6.11: A View of the Pendulum World Showing the Surrounding Objects

96Figure 7.1: Main System Index Page

97Figure 7.2: Client browser window for the Newton's Cradle Model (Internet Explorer 6.0)

98Figure 7.3: Entire System

101Figure 7.4 Graphs illustrating differences in sample values

111Figure 7.5: Server Latency with Multiple Connecting Clients

111Figure 7.6: Server CPU load with 6000 connecting clients over five minutes.

115Figure 8.1: Virtual Reality Toolbox MagLev Example

117Figure 8.2: Ford’s viewpoint media player web page

118Figure 8.3: NI LabView Remote Panels

Table of Tables

50Table 5.1: Programming Language Comparison

59Table 5.2: RMI replacement technology comparison

61Table 5.3: RMI vs. JCB comparison

104Table 7.1: Test Environment

105Table 7.2: Server Networking Test Scripts

106Table 7.3: Animation & Display Test Scripts

106Table 7.4: Applet Input & GUI Test Scripts

107Table 7.5: Stability & Memory Usage Test Scripts

108Table 7.6: Bug Fix Priorities

108Table 7.7: Test Results Table

114Table 7.8: Cross Platform Compatibility

119Table 8.1: Comparison of System Client

122Table 8.2: Download Sizes and Times

Table of Equations

25Equation 3.1

26Equation 3.2

26Equation 3.3

29Equation 3.4

29Equation 3.5

29Equation 3.6

29Equation 3.7

30Equation 3.8

30Equation 3.9

30Equation 3.10

30Equation 3.11

30Equation 3.12

31Equation 3.13

31Equation 3.14

31Equation 3.15

33Equation 3.16

55Equation 5.1: Data Stored by Initial System

69Equation 5.2: Data Stored by Final System

GLOSSARY

4+1 View Model: Organizes a description of a software architecture using five concurrent views, each of which addresses a specific set of concerns. These are: Logical, Development, Process, Physical, + Scenario views.

Anti-aliasing: In computer graphics, anti-aliasing is a software technique for diminishing "jaggies" - step-like lines that should be smooth. "Jaggies" occur because the output device, the monitor or printer, does not have a high enough resolution to represent a smooth line.

Apache Xerces: Fully validating parsers for both Java and C++, implementing the W3C XML and DOM (Level 1 and 2) standards, as well as the de facto SAX (version 2) standard (Apache.org XML Project, 2002).

API (Application Programming Interface): The interface calling conventions by which an application program accesses operating system and other services.

Bandwidth: The amount of data that can be transmitted in a fixed amount of time.

Bilinear filtering: A texture mapping technique that produces a reasonably realistic image. An algorithm is used to map a screen pixel location to a corresponding point on the texture map. A weighted average of the attributes (colour, alpha, etc.) of the four surrounding texels is computed and applied to the screen pixel. This process is repeated for each pixel forming the object being textured (TechWeb Encyclopaedia: Business Technology Network, 2002).

Class Diagram: The types of objects in a system and the various kinds of static relationships among them.

Hash table: A scheme for providing rapid access to data items which are distinguished by some key.

HTML: HyperText Markup Language (HTML), the publishing language of the World Wide Web (World Wide Web Consortium HTML 4.01 Specification, 2002).

Java: A trademark used for a programming language designed to develop applications, especially ones for the Internet, that can operate on different platforms.

Java class: A compiled Java file. Java classes are executed by the JVM.

Java Reflection: Reflection is a feature in the Java programming language. It allows an executing Java program to examine or "introspect" upon itself, and manipulate internal properties of the program.

JCB (Java ClassBroker): An ultra-lightweight Object Request Broker (ORB) with extended network services and smart proxies for Java applications and applets.

Just-in-time: A strategy for content management in which the data is delivered from the server immediately before it is required for display.

JVM (Java Virtual Machine): A small application that runs allows a computer to run Java programs.

Latency: In networking, the amount of time it takes a packet to travel from source to destination. Together, latency and bandwidth define the speed and capacity of a network Webopedia, 2002).

Matlab: Matlab is an extensible tool for doing numerical computations with matrices and vectors (Department of Mathematics University of Utah, 2002).

Middleware: The glue in the client/server environment.

Multi-treading: Running a computer program with multiple things happening at once in an asynchronous manner.

Mutex (Mutual Exclusion): A collection of techniques for sharing resources so that different uses do not conflict and cause unwanted interactions.

Proxy: A server that acts as an intermediary between. See also: middleware.

RMI (Remote Method Invocation): Enables the programmer to create distributed Java technology-based to Java technology-based applications, in which the methods of remote Java objects can be invoked from other Java virtual machines, possibly on different hosts.

RMI compiler: Generates stub, and skeleton class files (JRMP protocol), and stub and tie class files (IIOP protocol) for remote objects. These class files are generated from the compiled Java programming language classes that contain remote object implementations (Sun Microsystems Inc., 2002).

RMI registry: Remote object registry that bootstraps naming service. Is used by RMI servers on a host to bind remote objects to names. Clients can lookup remote objects and make remote method invocations.

Semaphores: The classic method for restricting access to shared resources, e.g. storage, in a multi-processing environment.

Simulink: An extension to Matlab, Simulink is an interactive tool for modelling, simulating and analysing dynamic systems (Mathworks, 2002).

UML (Unified Modelling Language): Standard framework for expressing the design of object-oriented systems (IBM: A UML workbook, 2002).

Use Case: A set of scenarios tied together by a common user goal.

VRC (Virtual Reality Control): The name of the Java Client/Server middleware system developed for this project.

VRML (Virtual Reality Modelling Language): Text based mark-up language and 3D world file format.

VRML nodes: describe objects and their properties. It is placed in the scene graph which contains hierarchically grouped geometry to provide an audio-visual representation of objects.

VRML Object: A three-dimensional item modelled in the Virtual Reality Modelling Language, (VRML).

VRML World: A three-dimensional environment, developed using the Virtual Reality Modelling Language, composed of one or more objects.

Waterfall model: Software lifecycle models that establishes a linear order of project stages.

1. INTRODUCTION

In the past few decades computer technology has revolutionised the world, particularly through the Internet which has opened up many avenues that were once thought impossible. The Internet today has emerged as one of the best means of worldwide communication; its ability to distribute information to anywhere anytime is indeed attractive. Spurred by development in computer science and network technology, the use of the Internet has been expanding exponentially and is now extensively used as a connectivity and reference tool for commercial, personal and educational purposes. In the education field, the Internet provides many ways to enhance learning and expand educational opportunities for students. This global net has the potential to bring educators and students from around the world into one classroom. Methods that integrate the Internet into education can be divided into three categories (Zhang et al, 2001):

Develop a course website to centrally house various online functions and facilitate course management.

Create a remote laboratory in which multimedia animations or simulations replace physical experiments are provided.

Develop a web-based laboratory that enables students to set up the parameters for running experiments from a remote location. (Zhang et al, 2001)

Distance learning and research has become a common activity. However, most available Internet sites for such activities do not involve the use of laboratory equipment, even though the use of laboratory tools is often essential for obtaining real physical data. The need to remotely control actual laboratory equipment arises mainly in science and engineering fields. This remote access offers users, such as students, teachers and researchers the ability to conduct laboratorial experiments using equipment that otherwise may not be readily available from the convenience of a remote location. This kind of tool might also be useful in industry and research applications. Some unusual or expensive equipment may be kept in a small number of locations, and therefore industry workers or researchers located throughout the globe can benefit from remote access of the equipment in those locations.

The concept of a virtual laboratory has been developed over the last few years. The advantages are: - uninterrupted access to hypothetical experimental set-ups, minimal cost needed to set up a laboratory (it only requires a robust communication network) and straightforward maintenance and improvement. Other advantages include the flexibility of time and location as the availability of laboratories for experimental training to all, without the need of replicating the installations of the same devices on the different education sites. This is particularly important. Moreover, the development of remote laboratories by different education institutions could in the near future induce the sharing of laboratory equipment and the reciprocal interchanging of experimental training tools. Another advantage of virtual laboratories is that possible risks present in real laboratories are avoided. However, today, the virtual laboratory concept is still far from providing real engineering experiments. It is important to explore the real experimental phenomenon and feedbacks.

This project aimed to build a virtual laboratory for control systems demonstrations with three-dimensional illustrations of the experiments. Customers logging in over the World Wide Web can access these control systems simulations. The example demonstrations created are: - a bouncing ball, a pendulum, an F14, a radar and a Newton cradle. The web page designed uses Simulink software from Matlab 6.1 (Mathworks, 2002) to develop the control simulations and a Java (Sun, 2002) interface to interlink Simulink with the three-dimensional VRML (Web3D Consortium, 2002) illustrations. The web site aimed to make this system as convenient and easy to use as possible by making it unnecessary to download or install any additional material or browser plug-ins.

A user manual for the system produced can be found in Appendix E.

1.1. Target audience

The World Wide Web Virtual Three-Dimensional Control System was designed to target users interested in control systems, from beginners to professionals. The web page contains simple control experiments, such as a bouncing ball and a pendulum as well as more complicated models, such as a Newton cradle, an F14 and a radar.

The web page was also designed to be simple so that the user does not have to understand much about computer systems.

1.2. Methodology

The team carried out Internet background reading and research to learn about the main three programming languages used, Java, Simulink and VRML. Simulink was bought using the project’s budget. A financial statement can be found in Appendix H.

Work for this project was spread over eight months, so a work plan was drawn up, as shown in Appendix A. This plan lays out the main tasks, showing their start date, finish date and hence their duration.

As the time plan shows, many of the tasks were carried out simultaneously. This was made possible by dividing all tasks among the four members of the team. The team performed the tasks of deciding the architecture, the integration and testing together. The other tasks, such as Matlab/Java interface, Simulink models development, Java implementation and three-dimensional worlds development were split between the four team members. Regular meetings were held in order to review progress. Minutes and Agendas of the formal meetings held can be found in Appendix G.

1.3. Structure of the Report

After the initial discussion, this report gives an overview of the architecture needed to develop the Virtual 3D Control Systems WWW Demonstrator based on Matlab.

After this introduction the report can be divided in four parts. The first part explains the control models developed in Simulink. The second one reports the Simulink interface wrapper. The third part describes the development of a Java program similar to the existing Matlab Virtual Reality Toolbox. The fourth part describes the three-dimensional worlds developed to illustrate the control models. The report ends with three chapters: one that discusses the integration of the individual tasks and the testing of the system, another one that evaluates the produced system, and the last one that gives overall conclusions of the project and discusses future work.

This report is also available on CD-ROM format. A table of contents for the CD-ROM can be found in Appendix F.

1.4. Colour Key

Diagrams throughout this report use a variety of colours. These colours help to reinforce which subsystem a particular line or box represents, thus allowing diagrams to be understood more quickly and easily. The diagram below shows subsystems with their associated colours.

[image: image1.emf]Virtual Reality Control Server

Java Connection Broker

VRML World

Control Applet

Matlab Connector/Wrapper

Matlab

Blaxxun3d Applet

Figure 1.1: Diagram Colour Key

2. ARCHITECTURE

This section describes the highest level of system design. It details the system’s requirement in form of Use Cases, the software lifecycle model adopted for this project, as well as giving an overview of how the main system components interrelate.

2.1. Requirements Analysis

The requirements analysis section outlines the requirements gathering phase of the project. A scenario introduces the system’s required capability, followed by a Use Case analysis, which gives more detail.

Project Requirements

The initial requirement of the project was to produce remote demonstrations of Matlab/Simulink control simulations in a similar fashion to the Matlab Virtual Reality Toolbox 2.0 (Mathworks Virtual Reality Toolbox, 2002). That is “to provide a solution for visualising and interacting with dynamic systems in a three-dimensional virtual reality environment”. Since this VR-Toolbox only runs on the Windows operating system, an additional requirement was to provide some cross-platform functionality.

Scenario Script View

What follows is a possible sequence of events for the use of the “Virtual 3D Control Systems WWW Demonstrator based on Matlab” system. This scenario gives a good initial grasp on the project.

Student views an online control model

1. A sixth-form student intending to study an Engineering degree is browsing through University web sites using a dial up connection.

2. He looks at the University of Southampton’s website.

3. He sees a link to a “Virtual 3D Control Systems WWW Demonstrator based on Matlab”.

4. He clicks on the links and gets a page with a choice of various models.

5. He chooses the bouncing ball control model.

6. After a short delay, a 3D ball appears and bounces around the screen.

7. The student uses a field to reduce the elasticity of the ball.

8. The ball bounces progressively lower and quickly comes to a complete stop.

9. The student restart the simulation a few times experimenting with different settings.

10. The impressed student decides to apply to study engineering at the University of Southampton.

Use Case

A Use Case analysis identifies and clarifies typical user interactions with the system. It is an excellent tool for capturing basic system requirements. The definition for Use Cases is “usage scenarios tied together by a common goal”. The diagram contains these Use Cases along with “Actors” that represent the role a user plays in a system. A “user” may be a human user, or simply another system. These scenarios should only capture the most basic functionality of a system. Capturing every single complex system requirement in a Use Case would be a waste of time according to Martian Fowler, author of UML Distilled (Fowler, Martin, 2000), since these would be outdated and changed almost as soon as the diagram was drawn: “You don’t have to write all the detail down; verbal communication is often very effective”. See Figure 2.1.

[image: image2.png]Program Control Model

1
! <<yses>>

Control Expert

Link Model to 3D
World

Excerise (Remote)
Control

~
<<uses>>©

Non-Technical User
View 3D depiction

Create 3D World of Control Model

3D Artist

Figure 2.1: Use Case Diagram

Use Cases give a good first estimate of development effort. A single Use Case takes roughly one person-year of development to complete (Fowler, Martin, 2000). The above diagram has five Use Cases. This gave an indication that that pre-built components would be needed to complete this project in time. The main outside component would turn out to be a software product called “blaxxun3D” (Blaxxun, 2002) to handle the “View 3D depiction of Control Model” Use Case.

The Use Case diagram also has many interactions, indicating that this system would be highly coupled and require a great deal of co-ordination between team members.

2.2. Lifecycle

Once the requirements for the project were outlined, a suitable software lifecycle model could be chosen. The lifecycle adopted for the system was a modified waterfall model; specifically a “Waterfall with Subprojects” (McConnell, Steve, 1996). See Figure 2.2.

[image: image3.emf]Software

Concept

Requirements

Analysis

Architectural

Design

System Testing

Java Client/Server Subsystem

Detailed

Design

Coding

Subsystem

Testing

Simulink Interface Wrapper

Detailed

Design

Coding

Subsystem

Testing

3D Worlds

Detailed

Design

Coding

Subsystem

Testing

Matlab Control Models

Detailed

Design

Coding

Subsystem

Testing

Project

Completion

Figure 2.2: Waterfall with Subprojects

A waterfall model provides a very structured development plan that helps to create a high quality software application quickly. Systems developed using waterfall models tend to have a large growth envelope, meaning that they will be easy to expand and modify in the future.

However, a waterfall can lead to failure if the system’s requirements change mid-way through the project, or are poorly specified at the outset. Therefore, changes to the project’s requirements were avoided as much as possible, although some are always likely to happen. A waterfall model also tends to provide poor progress visibility. Project stakeholders will not see a working system until the very end of the project. It was felt that this lack of feedback and high risk from changing requirements would be worth the increased development speed, reduced likelihood of requirements change and increased ability to constrain the project to a predefined schedule (McConnell, Steve, 1996).

The requirements analysis and architectural design section of the project were conducted together. Thereafter, based on the Use Case analysis, the project broke down into four logical subsections, one for each team member. For maximum development speed, these were developed independently for as long as possible and integrated late in the project.

The two-way arrows are significant. Since unforeseen problems were sure to occur during developmental, the lifecycle model allows backtracking, previously completed stages could be modified.

There is a risk of unforeseen interdependencies with a waterfall lifecycle model. These interdependencies might have resulted in one subsection having to wait for another to complete. However, this risk never manifested itself.

2.3. Architecture Overview

It was decided that the “Virtual 3D Control Systems WWW Demonstrator based on Matlab” should be implemented using a three-tier architecture. This architecture has the following system components, see Figure 2.3.

[image: image4.emf]Client Wrapper

Matlab &

Simulink

3D

World

Workstation

iMac

Workstation

Computer

 Laptop

Server

Server

Figure 2.3: Basic System Architecture

A control simulation runs encased in a wrapper. This wrapper encapsulates the communication with a server running on a different computer. The server communicates with a client on yet another computer to display a 3D representation of the original simulation.

2.4. Architecture Detail

The implementation of each of the components in this architecture would require the use of a specific technology. Matlab was a prerequisite at the project’s onset. Simulink is a logical add-on to Matlab for control simulation. Java is the “middleware” between Matlab and the 3D world. VRML is the 3D worlds’ implementation file format. The individual sub-sections contain detailed justifications of technology choices.

This technology architecture in shown in detail in Figure 2.4.

[image: image5.emf]Client Computer

Client Computer

Matlab 6.1

Matlab 6.1

Web Server Matlab 6.1 Client Computer

Java

Control

Applet

Java

Server

Java

Class

Java Display

Applet

VRML

World

Simulink

Wrapper

Control

Simulation

Figure 2.4: Basic Technology Architecture

A Simulink control simulation runs encased within a Simulink wrapper. This wrapper uses special Simulink blocks that interface with a Java class. This class executes using the Java Virtual Machine built into Matlab 6.1. It encapsulates a network connection to a Java server on a different computer. Many such Matlab Java classes may connect to a single server. The server handles connections from clients wishing to view the Simulink simulation. These clients open a web page with a Java applet hosted by a web server running on the same computer as the Java server. A Java control applet connects itself to the Java server. The Java server links the Matlab connection with the appropriate client connections control applet – there can be any number of clients viewing any single simulation. The Java control applet connects to a Java VRML display applet, which encapsulates the VRML world of the simulation, for display on the user’s web browser. The control applet uses the display applet to modify the VRML world as directed by the control simulation.

2.5. Subcomponent Development

The modified waterfall lifecycle model needs to consider the interactions of subcomponents. The system’s logical interactions were outlined in the previous section. Interactions necessary between team members during the developmental process are similar to these logical interactions. However, the subcomponent developers’ interactions are best expressed as a circle (Figure 2.5). Every member of the team had to collaborate with two different team members. These communication channels allowed all team members to become “experts” in their particular specialist areas, acquire a good understanding of their neighbouring sub-component domains, and not be overloaded by the fourth area.

[image: image6.emf]Java

Client/

Server

System

3D Worlds

Timing

and

Control

Wrapper

Matlab

Control

Models

Clara

Cardoso

Ian

Farmer

Sam

Hopper

Julian

Seidenberg

Figure 2.5: Developmental Interactions

2.6. Summary

The architecture of a system is crucial to the achievement of project objectives. Non-functional goals are especially dependent on a choice of architecture. The chosen three-tier architecture is advantageous in facilitating the following project design objectives:

Advantages

Advantages derived from the architecture can be summarised as follows (3- and n-Tier Architectures, 2002) (The EcoAccess Web Application Framework, 2002):

Platform independence: The middle-tier can enable transparent inter-connection between clients running on Windows, Linux, or any other supported operating system (see Appendix D).

Security: Clients connect to the server and not directly to each other. It can catch and deal with attempts to be malicious and prevent them from causing harm.

Privacy: Clients do not receive information about each other, other than that supplied by the server. For example, a user watching a control simulation has no way of finding out the IP-Address of the computer running the Matlab program that is controlling that simulation.

Scalability & Load Balancing: Multiple Matlab clients and multiple applet clients can connect to the same middleware tier, which significantly cuts down on network traffic when many clients are connecting to each other.

Analysability & Testability: Global usage statistics are easy to record by extending the server. Monitoring network traffic for debugging and optimisation purposes is also straightforward.

Maintenance & Flexibility: It is easier to add a new feature or fix a bug in a multi-tier system, since the layer of abstraction facilitates the creation of a common interface. By using this, changes to one part of the system have less effecting on another. The ability to publish interfaces helps improve communication between team members.

Redundancy & Recoverability: If a network connection goes down, clients can reconnect to the middle-tier server. As long as the server continues to run a temporary client and/or network failure is of little consequence.

Disadvantages

Possible disadvantages this architecture may cause are:

Complexity: A three-tier system is more complex to implement than a simple single host-to-host network connection. Such a system will also mostly likely be more difficult to install and configure.

Performance: In most cases, a three-tied architecture will be slightly slower than a two-tier one, since the processing in the middle tier takes more time, than a direct end-to-end connection would. The extra layer of indirection is an overhead.

3. SIMULINK MODELS

3.1. Introduction

The aim of the project was to develop a system that would allow the end user to see the output of a model in a graphical form. This graphical output would not be graphs as supplied by Matlab but would form a virtual laboratory.

In the context of this project a control model is a mathematical model of a system, be it mechanical, physical or electrical. For this project, five example control models were integrated into the system. These models were adapted from various examples given in the Matlab demos (Mathworks, 2002).

The models were all developed using Simulink (Mathworks, 2002), which is part of Matlab software package. It allows the user to model, simulate and analyse dynamical systems, supporting linear and non-linear systems modelled in continuous time or sampled time. For modelling, Simulink provides a graphical user interface for building models as block diagrams using click and drag operations. This allows the user to draw models as they would be drawn on paper. This interface encourages experimentation, as a new model can be easily built and existing models can be easily modified. Parameters can even be altered during a simulation allowing the effects to be seen immediately.

Development

Bouncing ball model

The bouncing ball model was a three dimensional extension of the one dimensional Matlab demo bounce.mdl, shown in Figure 3.1.

[image: image7.png]~=lolx|

bounce
et Uow Smion Fomat Tols telp
MECERE L R
ity ety
N
T
.
gl Position
v
[odezs

[io0%

Ready

Figure 3.1: Matlab demo - Tracking a bouncing ball

Bounce.mdl simulates the motion of a ball in the vertical direction over time. The model uses two integrators to produce the velocity and the position of the ball from the inputted acceleration (gravity). The position integrator has a low saturation point of 0 to simulate the ball’s position being limited by the ground. The velocity integrator has a negative edge reset that is triggered by the position reaching 0. When triggered the velocity is reduced to 0.8 of its value before impact on the ground and its direction is reversed. Hence a simulation of the ball bouncing is achieved.

An adaptation of this system can be used to model the ball’s motion in the other two axes. The bouncing ball model is shown in Figure 3.2.

[image: image8.png]it rsist

xvelosity ol fass posix

s <=
L 1
- o o : T
i - o
Elasticity Product | iiaryc
veosity
o0 |y
waTern
B
] (T
Ball radius. .{m - -
rrdom o
ety
a8 |y
PN Y 1 s
: e
3 x ol Positi e
I e
e ey o Jabe sz
room size 005
GIE L
o P, 2pos,
s s Posion

PO iz

veloity

Figure 3.2: Bouncing ball model

The green area highlights the original one-dimensional model and the red areas highlight the models for the position of the ball in the other two directions. The ball is modelled to bounce off of five surfaces representing the floor and four walls as shown in Figure 3.3.

[image: image9.png]ocuments and Settings\Gob| T

omputer

Figure 3.3: Bouncing ball boundaries

Deceleration due to air resistance is modelled and is proportional to the velocity of the ball. Air resistance is not modelled in the Y direction but gravity is. This is because acceleration due to gravity is assumed to be far greater than deceleration due to air resistance. Loss on impact with a wall is modelled with the elasticity of the ball. The elasticity must always be a negative number representing the change in direction on impact. A value of –1 would give no loss of velocity on impact. A value of < –1 would give a gain on impact. A value of > –1 would give a loss on impact. The blue highlighted region in Figure 3.2 is a simple model for the shadow that increases in radius proportionally to the ball’s height. Typical output from a simulation of the model is shown in Figure 3.4. The position of the ball is shown as graphs for the three directional components.

[image: image10.png]X position

0
7 5
£
[
10
o 2 4 B 8 0 12 14 16 18 2
Time
¥ position
15
70
s
€0
) 2 4 6 8 0 12 14 1B 18 2«
Time
z position
0
7 5
£
[
10
o 2 4 6 8 0 12 14 1B 18 2«

Time

Figure 3.4: Output from simulation of ball motion

RADAR tracking demonstration

The RADAR tracking demonstration model was adapted from the Matlab demo aero_radmod.mdl, shown in Figure 3.5
[image: image11.png]Extended Kalman Filter To Estimate Aircraft Position From Radar Measurements
(See aero_extkalman.m for implementation of filter)

XvEaaris

Jactust Posiion

Porartends

Cromiis

i

Randam aicrat
mation

Aoceleration Model

Thrust s
Aocleration Mads!

Fresa
Actual Specd

.

Crossois
Valacity

Cos
s
Positian

Caesian to Polar

Long.
Valadity

“ '

Long,
Posiian

Y[~

L feasuement noise

Resid

(TR—

e pos

Radar
Kalman Fiter

Send Radar Mazs Noe
to Wotepace

Send Radar Range andBearing
‘Angle Me3s. to Wotspaoe

asidual

Resitusks

Xnat

. Postion

b xdot, v, ydo]

Figure 3.5: Matlab demo – RADAR tracking demonstration

The highlighted blue region of the model describes the two-dimensional movement of an aircraft with random inputs to the thrust axis and cross axis acceleration models. The red region shows the measurements taken of the aircraft’s position modelled as the actual position plus random noise. The radar Kalman filter takes the measurements and produces the estimated position coordinates. The Kalman filter can be seen expanded in Figure 3.6.
[image: image12.png]T

i

WATLAE

Measurements

ZewOrter
Hola

et

>

Function

Edentsd
Kaiman Fiter

Update Time

g

Efe

o«

Praviaus
nat and
Covariance Matis

Fesi

e P

Figure 3.6: RADAR Kalman filter

At the heart of the Kalman filter is the Matlab function block which calls the m-file aero_extkalman.m.

The adaptation of this model was straightforward. Instead of random thrust power at the input to the acceleration models user definable inputs were placed instead. The initial velocity was also made user definable. The outputs chosen to be displayed in the virtual world were the actual and estimated position of the aircraft. The resulting model is shown in Figure 3.7.

[image: image13.png]e i
X¥Coords |actual Posiion
Enable
: Send Radar B a8
actualpostion [Patarcaards |oond Radar Range andBearing

‘Angle Me3s. to Wotspaoe

g > NER BN EY
Hirrel Q — Feidoas
rs om A, s
Acesleration Model = Est. Position
Position Cartestan t Polar Radar b xdot, v ydot]
)
5|
i end Radar Meas. Noise
Accleration Model | Long e Messument Intensity o Woikp:

nitvelesity

Figure 3.7: Adapted Radar tracking model
A typical simulation of the model gives the output shown in Figure 3.8. The estimated position follows the actual position of the aircraft with slight errors.

[image: image14.wmf]

Actual

position

Estimated

position

Figure 3.8: Typical output from RADAR tracking model

F14 Flight control

The F14 flight control model is an adaptation of the Matlab demo model f14.mdl, shown in Figure 3.9.
[image: image15.png]Stidknput

stk gt)

apha (ra9) Bevator Command (eg)

Tasm

a Gadisee)

Contrater Actuator

a

Dryden wind
Gust Madals

szl
>

Model
Virical s wust Cizec

evator Deection ¢)
Verical ooty ses)

Prch Rate (adsec)
Fotary Gust abust (adsec

et
Dynamics
Model

v

W pilot

pic g foce @)
i

caleulation

|

Pilet & force
Seape

Nz Pilot (@)

|

Angie of
it

aipha e

F-14 Flight Contol
(Double clik on the "7 for mare nfe)

To star and stop the simulation, use the "Start” and
“Stp alactions in e “Simulation® pulldown mans.

Dauble disk
hers for

Simulink Help

Figure 3.9: Matlab demo - F14 flight control simulation

The model includes: the stick input from the pilot, controller, actuator, aircraft dynamics model and wind gust disturbance. The pilot’s stick input and resulting G-force and angle of attack can be seen in Figure 3.10.

[image: image16.wmf]

Figure 3.10: Typical output from F14 model

The model simulates control of the aircraft in two dimensions relating to the height of the aircraft and it’s forward motion. The stick input of 1 and –1 is the required attack angle from the aircraft. This is achieved with a G-force of about (13. Model variables are stored in an m-file and loaded previous to the simulation. The controller is shown expanded in Figure 3.11. The controller contains eight variables. As a demonstration of the overall system it was considered that user control of the four gains (Kf, Ki, Ka and Kq) would be adequate.

[image: image17.png]190)

1 > -
= B
sia Crovaor
gty S Fropaional Command tteq)
Prtiter St nteal

compansator

T P

Tare
aipha e

Alphasensor
Lowpass Filter

ot &

Sz
aadise

Piteh Rate
Lead Fitter

Figure 3.11: F14 controller model

The controller model was adapted as shown in Figure 3.12 to allow user control of the gains.

[image: image18.png]O

%

p rn
B

B O—F .
(O "

T it

Propaimal o

s
Inputry Er pls gl
compansatr

.
Gl ol == e
aonstn0

Wa gain

Lowpass Filter

st
] W g ®

P

x Sz
aadise
Wa gain Piteh Rate
Lead Fitter

1

Figure 3.12: Adapted F14 controller model

Figure 3.12 shows simple replacement of gain blocks with product blocks to allow for extra inputs. The outputs to be displayed in the virtual world would be the F14’s pitch and position in the two dimensions relating to height and forward motion. The vertical position, pitch and horizontal position are found by integrating the vertical velocity, pitch rate and horizontal velocity respectively. This is shown in Figure 3.13.

[image: image19.png]1] LB

crae
Pl
= - el Seope
[T (U B N
suit
" Z it i Pilot g f
St g Pt i o 3o
5 T e
alohion
Filot e ppaipha (ad)
PR
= N
RERSES—— N ERS——"
Tastt Vertvel height
N e e Velsty (e | N
Woan
Integratort Height
Cortaner
6t s) —E
s
o
. e
Jre— e
pRRES w 0| oy s s s
s o
oo L
o ng =
faisicd e
omanis =
(ol

Piton rate Fiteh

Figure 3.13: Adapted F14 model

Pendulum

Inspiration for how the pendulum would be realised in Simulink came from the Matlab demo simppend.mdl, shown in Figure 3.14.
[image: image20.png]imppend

-[o) x|
Fle Edt Uew Smustion Fomat Toos Help
DSHE iR (2 hELS|> =

EEE o

ot
Fomied frpenguum
Mamant »]
L] 1L x|l
o) ol & b
= v v x&theta Animation
T et | s Funcion
L %
strien
s e

Fantheta)

Simple Pendulum Systam

Dauble disk
(Double lidk on the "7 for mare nfe)

hers for

To start and stop he simulation, use the "Starsto
Selection n the "Simulation® pull-down many

Simulink Help

Ready fio0%

[odeds

Figure 3.14: Matlab demo - Simple pendulum.

A pendulum can be represented by a second order linear differential equation. The forces acting on the pendulum mass are gravity, the opposing motion of air resistance, and tension in the pendulum arm. Resolving these forces perpendicular to the pendulum arm gives Equation 3.1

[image: image21.wmf]q

q

sin

2

2

mg

R

dt

d

ml

-

-

=

Equation 3.1
A diagram illustrating this can be seen in Figure 3.15

[image: image22.wmf]

T

l

q

R

mg

Figure 3.15: A pendulum with air-resistance
If the air resistance is assumed to be proportional to the speed of the pendulum mass, then the equation will change, as illustrated by Equation 3.2.

[image: image23.wmf]dt

d

kl

R

q

=

Equation 3.2
Equation 3.2 can now be rearranged to find (. This results in Equation 3.3.

[image: image24.wmf]òò

ò

-

-

=

dtdt

l

g

dt

m

k

q

q

q

sin

Equation 3.3
Equation 3.3 can then be recreated using Simulink. The initial translation to Simulink can be seen in Figure 3.16.

[image: image25.png]=lo/x|

Bl Edt Vew Smulation Fomat Tools

DSHE| 282 REL®| > =

i » 1 »
—t : L e
b et
et nialpostiont g
aot
T
x4 e 7
< B u =
Produrtz . mas
e an Ja
X s
T
fetf 2 fe - T
i e
Ready [100%. [odeds

Figure 3.16: Pendulum equation realised in Simulink

In Figure 3.16 the blue region corresponds to the double integral and the orange region corresponds to the single integral in Equation 3.3. Given an initial position of theta equal to 0.2, a mass of 1, a length of 1 and air resistance of 0.5 and running a simulation gives the output shown in Figure 3.17.

[image: image26.png]DT .o

Eo Edt Yew Inert oo Window e
lnsaarar/2pn
sadtdltezn|eloo

IS
Theta of pendulum aver time

Lo

2 4 3] 10 12 14 16
time

Figure 3.17: Motion of pendulum.

This output is expected of a damped second order linear differential equation. It shows a natural frequency of 2 seconds and the displacement being damped by the air resistance.

Newton’s Cradle
[image: image27.jpg]

Figure 3.18: Graphical representation of a 5 sphere Newton's Cradle
In a Newton’s cradle, hard steel spheres hang at rest, side by side. If one or more spheres are displaced near elastic collisions result. A graphical representation of a five sphere Newton’s cradle can be seen in Figure 3.18.

A collision between two spheres must follow two laws, the law of conservation of momentum and the law of conservation of energy. The law of conservation of momentum follows from Newton’s second and third laws. Newton’s second law states the force acting on an object is equal to the change in momentum of that object. Newton’s third law states that for each action there is an equal and opposite reaction.

Collisions between two masses

Assuming that the spheres are perfectly smooth, collisions are head on, energy is purely translational and not rotational or vibrational and that collisions are purely elastic? If two spheres collide, with the assumptions stated, momentum and energy must be conserved. In a collision between two spheres there are six factors involved, these are: the mass of each sphere, the velocity of each sphere before the collision and the velocity of each sphere after the collision. This is shown in Figure 3.19.

[image: image28.wmf]

m

1

v

1

m

2

v

2

m

2

v

2+

m

1

v

1+

Before collision

After collision

Figure 3.19: Diagram showing factors involved in a two-sphere collision

Applying the Law of Conservation of Momentum to this situation:

[image: image29.wmf]+

+

+

=

+

2

2

1

1

2

2

1

1

v

m

v

m

v

m

v

m

Equation 3.4
where vi is the initial velocity of each object and vi+ is the final velocity of each object.

Applying the Law of Conservation of Energy gives the equation

[image: image30.wmf]2

2

2

2

2

2

2

2

1

1

2

2

2

2

1

1

+

+

+

=

+

v

m

v

m

v

m

v

m

Equation 3.5
Equation 3.4 can be factorised to:

[image: image31.wmf])

(

)

(

2

2

2

1

1

1

v

v

m

v

v

m

-

=

-

+

+

Equation 3.6
Equation 3.5 can be factorised to:

[image: image32.wmf])

(

)

(

2

2

2

2

2

2

1

2

1

1

v

v

m

v

v

m

-

=

-

+

+

Equation 3.7
 Dividing Equation 3.7 by Equation 3.6 gives:

[image: image33.wmf]2

2

1

1

v

v

v

v

+

=

+

+

+

Equation 3.8
or

[image: image34.wmf]+

+

-

=

-

1

2

2

1

v

v

v

v

Equation 3.9
This shows that the relative velocity before a collision will equal the relative velocity after the collision.

Final velocity

Solving Equation 3.9 for v1+ and v2+ and substituting into Equation 3.4 the final velocities in terms of the initial velocities and the masses is found.

[image: image35.wmf])

(

)

2

(

)

(

)

(

2

1

2

2

2

1

2

1

1

1

m

m

m

v

m

m

m

m

v

v

+

+

+

-

=

+

Equation 3.10
Similarly

[image: image36.wmf])

(

)

(

)

(

)

2

(

1

2

1

2

2

2

1

1

1

2

m

m

m

m

v

m

m

m

v

v

+

-

+

+

=

+

Equation 3.11
This gives the basis for a model of a one-dimensional collision. For initial conditions v1 and v2, if a collision happens, the final velocities depend on the masses as above.

In Newton's Cradle the two masses are equal, therefore:

[image: image37.wmf])

(

)

2

(

)

(

)

(

2

1

1

m

m

m

v

m

m

m

m

v

v

+

+

+

-

=

+

Equation 3.12
Similarly

[image: image38.wmf])

(

)

(

)

(

)

2

(

2

1

2

m

m

m

m

v

m

m

m

v

v

+

-

+

+

=

+

Equation 3.13
These reduce down to the equations for the final velocities.

[image: image39.wmf]2

1

v

v

=

+

Equation 3.14
and

[image: image40.wmf]1

2

v

v

=

+

Equation 3.15
This means that a collision of two equal masses results in them exchanging velocities.

Two sphere model

Figure 3.20 shows the top level of the two-sphere model. In this model the masses are assumed to be equal. Each swinging sphere is modelled by a pendulum.

[image: image41.png]BleEdt

Vew Smuation Format Tools Help

~=lolx|

O

FHE 2RO REL S|

Ilreset thea ot

Memane

>

e theta e

lofie oo N e thnon N
B et
Sendunum Sendurumt
vy
cation [<_%
astection]| 5
“ |
Ready fioow | [odes

NlEd

Figure 3.20: Two-sphere collision model

The pendulum subsystems have two inputs: integrator reset and initial condition, and two outputs: angular position (theta_out) and angular velocity (theta_dot). The pendulum model shown in Figure 3.21 is the same as in section 3.2, but with a positive edge reset and initial condition input included on the first integrator. This allows the velocity of the pendulum to be discreetly altered in the event of a collision.

[image: image42.png]=lo/x|
Tools Help

Flo St Uow Smubtion Fomat
@) =

DSHE| 2B |2 R

- o et sot
— . T
resst : theta_out
iy
T
x4 Tle .
] os y
Prods frr D
e
e an |«
X ——— 5o
fe] L le—Jn ry
Froduet! 1on nw length
Ready fio0% [odes

Figure 3.21: Pendulum subsystem

When a positive edge is detected at the reset input, the value at the initial condition input is passed to the output. A positive edge occurs when the position of the two spheres are equal. This signal is produced by the collision detection subsystem shown in Figure 3.22.

[image: image43.png]=lo/x|

Bl Edt Vew Smulation Fomat Toos telp

DEHS /580 hEL
T
”
ooz | o R
14 . LAND
e < I A=
Lof 5

F[100% [[odes

Figure 3.22: Collision detection subsystem

Figure 3.22 is a Simulink representation of the inequality:

[image: image44.wmf]005

.

0

1

2

005

.

0

1

+

<

<

-

x

x

x

Equation 3.16

This means that when the two spheres are within 0.005 radians of being in the same position the subsystem outputs a high signal. The memory blocks that can be seen in Figure 3.20 ensure that the angular velocity of the spheres resulting from a collision is the same as that before the collision.

A simulation of the model over 20 seconds produces the result shown in Figure 3.23.

[image: image45.png][Foweno.1 =18
Fie it Yew Insert Dok Windon bep
losma/xar/pon
1 T T T
H H H — theta
— thetal
— connect
05 T T]
£
305 -
B
7 A S S N SN S
0 2 4 B 8 10 12 14 16 18 20

Figure 3.23: Angular position of the two spheres and collision signal.

The initial positions of the spheres were set to 1 radian in opposite directions. The two spheres can be seen to collide and then bounce apart as expected. The resistance of 0.5 produces the damping effect.

Three sphere model

Expanding the two-sphere model into a three-sphere model is not a simple case of connecting another pendulum subsystem. This is because once there are more than two spheres in the cradle there will be at least one sphere that can collide with the other two. In the three-sphere case this will be the centre sphere. In addition, the centre sphere is likely to be involved in two collisions in rapid succession with the two spheres adjacent to it. This will occur when the first ball is displaced and returns to strike the centre sphere which will in turn strike the third sphere. In Figure 3.24 the green region highlights the trigger select for the centre sphere; this is expanded in Figure 3.25.

[image: image46.png]~=lolx|

[T
Bl Edt Vew Smulation Fomat Tools

Help

DSHE| 2B (2 REL S| > =
e
e iem
s o s][] »foar Memane "
ity O e T S N I
N N Lot
- R R N I PR RN s
et —
CreT P E e iz
comeat
et
L] L]
cniton[<_¥ ctison[<_¥
daecion| 3 seecion| 3
L b
y | 5|
Ready oo Jodes Y

Figure 3.24: Three sphere Newton's cradle model

[image: image47.png]three_ball2/trig select: -[o) x|

Bl Edt Vew Smulation Fomat Toos telp

DSHS| =R |2

—on
e e
ne B
et
o]
g2 Product!

Flooe [[s

Figure 3.25: Trigger select subsystem

The trigger select subsystem solves the first problem stated above by selecting the initial condition to reset the centre sphere in the event of a collision.

The second problem, which occurs when the centre sphere is involved in two rapid collisions, can be solved by offsetting the spheres slightly. This is similar to a real Newton’s cradle where the spheres may not actually be touching when in the rest position. This is implemented in each pendulum subsystem except for the centre pendulum and is highlighted in blue in Figure 3.26.

[image: image48.png]three_ball2/pendulum2 *
Ele Edt Vew Smulation Fomat

-[o) x|
Tools Help.
DSHE| R hELS|[» =
T
- et sot
t 1 N
: bz
iy 05 |t [
1 e ost
x4 le
] os y
Prods maam
e ain 4t
X ——— 5o
T
e L fe— 5
Product! ‘Q"“W

lengihn

Ready fio0%

=3

Figure 3.26: Pendulum subsystem with (offset

The effect of the offsets is shown exagerated in Figure 3.27. If the offsets are kept to small values the effect on the VRML world is not noticable. This modification to the model is a realistic one. Most Newton’s cradles do not have spheres that are touching when at rest. This results in a real world effect of non perfect collisions.

[image: image49.wmf]

Offsets

Figure 3.27 Sphere offsets
Five sphere model

As can be seen in Figure 3.28 the three-sphere model is easily expandable to five spheres and even beyond.

[image: image50.png]e * :
st i ¥
T Gl .
aciind [| pad *
=] p

Yo =

Figure 3.28: Five sphere Newton's cradle model

The red region highlighted in Figure 3.28 is shown magnified in Figure 3.29. For the model to represent spheres of different masses, a block was needed for calculating the final velocities of a collision taking into account the masses of the spheres. The blue region highlights the subsystem and it is expanded in Figure 3.30.

[image: image51.png]2
8

m m1
Memory1 M
»ic vt o »ic flem
theta_dot —»| — W trig1
P reset L__l + v vl Pl reset theta_dot —»| J/__
. [P resist S P trig2 S5 ! resist
(D, mom
L= | < |
air resistancg m theta_out > S trig select P m
> Thetad - > theta_out
Theta0
‘
pendulum theta pendulum?1

collision

collision detection1

detection

Co—

Theta_init

Theta_init1

Figure 3.29: Magnified region of five sphere model

Figure 3.30 is the Simulink representation of the final velocity equations, Equation 3.10 and Equation 3.11. Some typical simulation output graphs can be seen in Appendix B.

[image: image52.png]

Figure 3.30: Final velocity calculation subsystem.

Summary

The Simulink models were developed to enable testing and demonstration of the systems functionality. The five Simulink models developed were the bouncing ball model, RADAR tracking demonstration, F14 flight control and pendulum. Interfacing problems occurred due to the necessary parallelism in the system’s development. Future models can be integrated with less difficulty now that the system is complete. The models were chosen to cover both physical models and control system models and range from complex to simple systems. It was important for the models to appeal to the target audience, so that their related VRML worlds would be realistic and interesting.

4. SYSTEM TIMING AND CONTROL WRAPPER

4.1. Introduction

Why Is Timing Important?

The system requirements demand that the simulation be displayed to the client in near real-time, with the ability to change parameters during the simulation. Therefore, the model must be executed in such a way that the positional data needed for the display applet is available on a just-in-time basis. This implies that timing must be an important part of the system, ensuring that the simulation appears accurate and natural to the client.

The Timing and Control Interface

It was decided to develop this interface as a wrapper for the Simulink control system model that would control the timing and data-flow of the entire server-side part of the system. Implemented in Simulink, the wrapper would take the form of two discrete blocks, sourcing and sinking the inputs and outputs of the model, and interfacing with Java network components to enable communication with the client.

The system was designed to utilise buffered packet networking, with successive packets sent to the client on a just-in-time basis, and with client parameter changes sent back immediately to the server. Therefore, it was decided that the system would compute the positional data needed for one packet, and then suspend for the remainder of that time. This would ensure that any parameter changes would be applied to the subsequent packets and be apparent to the client as soon as possible.

4.2. Development of the Timing and Control Interface

Initial Timing Theory

In order to develop the interface, the timing and control of Matlab and Simulink execution had to be investigated. Initially, a series of tests were run to investigate the ability of an m-file programmer to accurately influence the timing of a calculation by suspending the computation.

The first test (Appendix C: timed.m) utilised Matlab’s pause(n) command, which suspends execution for n seconds before continuing. Naively, this could be seen to be a quick and easy implementation for the timing system, but it has several drawbacks. The major problem with using pause(n) is that it does not take into account the time taken to compute the data for each packet. Therefore, there would be a gradual time lag during the execution; for example, if the packet length was set to two seconds, using pause(2), and the data took 0.1 seconds to compute, then after ten seconds of system run-time there would be a lag of one second. A graphical view of the test run using this method is shown in Figure 4.1 where the developing time lag can clearly be seen. The timing accuracy needed to ensure smooth running of the simulation means that this method is not a suitable technique for this purpose.

[image: image53.png]Calculation time

20

18

16

14

N

=)

@

Actual test performance -

- Desired performance

Lag time

I I
2 4 6 8 10 12 14

Simulation timescale

16

18

20

Figure 4.1: Timing results for the first Matlab timing test using pause(n)

So how could the timing be improved? The most accurate way of controlling a system’s timing is through the use of absolute time, i.e. using the system clock to provide accurate time information. Although Matlab’s API has functions for accessing date and time information, it does not have the immediate ability to provide a simple UNIX-type date stamp, i.e. the number of milliseconds since a suitable epoch, usually 1 January 1970. However, Matlab has a built-in interface for instancing and accessing Java classes and methods. The Java class Date can therefore be instanced at any point in the execution, and the current timestamp is available by calling its .getTime() method. A second test was written which made use of absolute timing in this way.

The second Matlab test (Appendix C: timed2.m) controlled the timing of a simulated data flow by using a delay loop to synchronise each packet with the desired timing. A simplified flow diagram of this test is shown in Figure 4.2 below; a count of the completed packets was kept which, when multiplied to the packet length, in seconds, and added to the start time, gave the desired current time. The tight delay loop was therefore designed to suspend the execution until this time was reached.

[image: image54]
Figure 4.2: Simplified program flow diagram for second Matlab timing test

Timing data for this second test proved to be excellent with a maximum deviation from the desired time of only 5ms, accurate enough for the purpose of this system. This data is shown in Figure 4.3, where the accuracy of the timing is readily apparent.

[image: image55.png]Calculation time

20

18

16

14

N

=)

@

- - - Actual test performance

----- Desired performance

- Lag time

Il L
8 10 12 14
Simulation timescale

16

18

20

Figure 4.3: Timing results for the second Matlab timing test using absolute times

However, this precision came with a heavy penalty: the CPU usage of Matlab whilst running the test was steady at 95%, as shown below in Figure 4.4. Clearly, the tight loop was eating up most of the system resources whilst it raced around waiting for the correct time to allow execution to continue.

[image: image56.png](CPU Usage History

N

Startof test End of test

Figure 4.4: CPU Usage for second Matlab timing test

Clearly, a wait method had to be devised which had the efficiency and computational inexpensiveness of pause(n), but retaining the accuracy of absolute timing. It was decided to run a third test (Appendix C: timed3.m) exactly the same as the second, but with a very short pause() in the wait loop. According to Matlab documentation the minimum pause possible on most platforms is 10ms, so the command pause(0.01) was used initially. However, on running the test it was found that shorter pauses were possible, down to 1ms, increasing the potential accuracy of the system. The effect of this modification was that the CPU usage of the new test was minimal, as shown in Figure 4.5.

[image: image57.png](CPU Usage History

N

Startof test End of test

Figure 4.5: CPU Usage for third Matlab timing test

The timing graph for the third Matlab test was virtually identical to the one for the second test, shown in Figure 4.3, which verifies the continued accuracy of the timing. Clearly, it would be possible to insert networking interface calls into this test script, and transfer packets of data to remote clients in a synchronised fashion.

Having proved the feasibility of controlling the timing of a Matlab execution, the next step was to extend this technique to the Simulink environment for use with the control system models used in this project.

Simulink Timing and Control

Controlling the timing of a Simulink model is different from controlling a Matlab script. The main difference is that Simulink has its own built-in timing, although this runs at a fastest-possible rate and its speed is therefore dependent upon the capabilities of the computer being used. It was decided that if a controllable delay could be inserted into the path of a simulation then it would be possible to suspend the model and enable data output in packets.

Simulink has the ability to insert into a model custom blocks, called s-function blocks, written in either Matlab code or another of several high-level programming languages. It was thought that if the principles from the Matlab tests were applied to an s-function block, suspending the dataflow in the same way, then this could be a suitable method of controlling timing. Therefore a test model was set up, using a s-function called delay1 (Appendix C: delay1.m), and shown in Figure 4.6 below.

[image: image58.png]S =T~ |

Fle Edt Vew Smulation Format Took Help

DSH&E $dBE |2 REL®| > =

o N =]

Ready Ji00% Fnedstepbisacte

Figure 4.6: Simulink window for first Simulink timing test

The code contained in an s-function block is executed once for every time step of the simulation. Available to the code at that time are the current simulation time (t), and the input vector for that time step. Therefore, when t is an integer multiple of the packet time the execution can be suspended, and the easiest way to implement this is to test for a zero modulus of t and the packet size.

Analysis

Inspection of the timing data produced by the Simulink delay test, displayed below in Figure 4.7, shows that the accuracy of this method is very high. The maximum difference between the desired and actual times was only 9ms, well within the margin of error required for buffered network data transfer.

[image: image59.png]Calculation time

1.8

1.6

1.4

[N}

o
™

0.4

0.2

x10

- - - Actual test performance

----- Desired performance

- Lag time

L

1 Il
0.2 04 06 08 1 1.2 1.4 1.6
Simulation timescale

1.8

x10

Figure 4.7: Timing results for the Simulink timing test (times in ms).

It was therefore decided that this method would be used in the actual simulations produced for this project, along with a way of supplying user-specified constants to the running model.

Final System Control Interface

The control system interface was designed to have two components, which would sit either side of the control system model. Therefore, the high-level model would only have three blocks, as shown in Figure 4.8 below.

[image: image60]
Figure 4.8: Block diagram representation of high-level Simulink model.

Datasource

The datasource is an s-function block that provides the inputs to the control system model. These inputs would be in the form of a vector of physical constants and other parameters which could be changed in the model during its execution. The datasource contains calls to Java networking components that handle the communication of variable parameters from the client.

The final datasource Matlab code can be found in Appendix C: datasource.m.

Datasink

The datasink is another s-function block which receives the control system data from the model and sends it to the networking system in fixed-length packets. The data from the control system is also a vector, made up of positional data for the various nodes in the VRML world. Calls to Java networking components in the datasink compile the data into packets, which are then sent out over the network or Internet.

The final datasink Matlab code can be found in Appendix C: datasink.m

Control System Model

The control system models are arranged as a sub-system, with discrete inputs and outputs. This means that each model can be quickly and reliably interfaced to the networking system, and new models can be easily added, as necessary.

4.3. Summary

From the outset, it was clear that the timing and execution control system would be key for achieving a smooth interactive simulation. Neither Matlab nor Simulink provide inherent functionality for real-time control, so the development of an accurate and efficient timing system proved to be the larger part of this system component. The remaining part of the system would be concerned with the communication of data in and out of the control system model.

For timing, the Matlab pause(n) command, although designed to pause execution for a given time, is not sufficiently accurate or suitable for the requirements of this system. Therefore a method using a wait loop and absolute times from the system clock was developed, which proved to be sufficiently accurate.

The final system consists of two Simulink blocks, a datasource and a datasink, which sit either side of the control system model. The datasource provides the inputs to the control model, supplied by the client and transferred by the Java networking. The datasink receives data from the outputs from the control model, and controls the timing to allow the Java networking classes to transmit the data to the client.

5. JAVA CLIENT/SERVER SYSTEM

5.1. Introduction

The role of the Java client/server system is to act as an interface between Matlab/Simulink and a user’s web-browser. The following sections detail this sub-system’s objectives and design. They also justify the choice of Java over other middleware implementation options.

Objectives

The goal in producing a Java client/server system was to link two seemingly fundamentally different applications, Matlab and web-browsers. Matlab is a proprietary, expensive, and powerful mathematics application, while most web-browsers are open, free, relatively simple and used universally. This system’s objective is to provide the best of both worlds: the power of a Matlab simulation, free and simple over the Internet for both technical and non-technical audiences.

The design objectives for the middleware system, ranked as to their relative importance, are as follows:

1. Multi-user: The client/server system needs to allow N:M interaction between clients.

2. Small size & quick download: The client program that runs in on a user’s computer needs to be as small as possible, so casual users with slow Internet connections do not lose interest while waiting for the download to complete.

3. Platform independence: User must be able to access the system from as many different software and hardware platforms as possible.

4. Ease of use: The system must be immediately intuitive for an end user who does not have any science or engineering background.

5. Performance: The system must exhibit adequate performance on up-to-date computer systems.

6. Accuracy: The control simulation display must be as accurate as possible without severely impeding previous requirements.

7. Expandability: It must be straightforward for future developers to alter or add functionality to the system.

8. Stability: The system must be able to run for extended periods and do so without significant loss of performance.

9. Scalability: The system must have the potential for a large number of clients to be able to access it concurrently.

Technology Choice

Java, PHP, Cold Fusion, C, C++, C# and Matlab were considered as possible programming languages for implementing the middleware system. The following table highlights some of the differences between these technologies (A Comparison of PHP and Cold Fusion, 2002) (Neumann , Michael, A comparison between BETA, C++, Eiffel, Java, Object Pascal, Ruby und Smalltalk) (Informal Language Comparison Chart(s), 2002) (Librenix Comparison: Microsoft C# vs. Sun Java, 2002).

Table 5.1: Programming Language Comparison

	Language
	Java
	PHP
	Cold Fusion
	C/C++
	C#
	Matlab

	Platforms
	Many
	Many
	Few
	Many
	Windows only
	Few

	Error Handling
	Try/Catch
	No formal error handling
	Try/Catch
	Limited error handling (C++)
	Try/Catch
	Try/Catch

	Focus
	General Purpose
	Scripting
	Web services
	General Purpose
	General Purpose
	Matrices

	Cost
	Free
	Free
	Thousands
	Free
	Hundreds (Visual Studio)
	Hundreds

	Garbage Collection
	Yes
	Yes
	Yes
	No
	Yes
	No

	explicit multi-threading
	Yes
	Limited
	Limited
	Limited
	Yes
	No

	Portable
	Yes
	Yes
	Yes
	No
	Yes
	Yes

	Suitable for distributed environment
	Yes
	Somewhat
	Somewhat
	No
	Yes
	No

	Proven Technology
	Yes
	Yes
	Yes
	Yes
	No
	Yes

	Built-in security
	Good
	Good
	Good
	None
	Untested
	None

Why Java?

Java is a programming language that is very good in a distributed environment. Since any middleware server must be highly concurrent, Java’s in-built support for multi-threading is advantageous. There are many third-party vendors supplying libraries for use with Java, giving a large set of options for specific protocols and other additional functionality, such as IBM Class Broker for Java (IBM AlphaWorks: Class Broker for Java). The 3D VRML display solution that most accurately matched our requirements, blaxxun3D (Blaxxun Interactive, 2002), is a Java applet, so also using Java makes sense. Security in Java is excellent, although security features built into Java can also be a shortcoming, since they prevent a program running as an applet from connecting to a computer other than the one it is hosted from – a desirable feature for the client/server interface. Furthermore, Matlab’s ability to integrate Java code into m-files allows seamless transmission of data between the two languages.

Speed is a shortcoming of Java. Since platform independence requires a layer of abstraction from any operating system, directly accessing a particular operating system’s 3D graphics procedures is not possible. Where a system using C++ could for example use Microsoft DirectX to produce a very detailed, hardware accelerated 3D display; a system written in Java will have to do the 3D calculations in software and will therefore be a lot slower.

Other Languages

PHP could have been used to implement the middleware. However, it cannot execute as an applet on any user’s machine, nor is it as well suited for multi-threaded execution as Java.

Cold Fusion is very similar in features to PHP. It was ruled out at an early stage because of its high cost and limited area of focus.

C and C++ require special libraries for multi-threading, making that more difficult than it is in Java. They are very platform dependent, making them unsuitable for a distributed middleware application.

C# is arguably more powerful than Java. However, it is currently restricted to the Windows platform and is a very new and unproven technology.

Finally, Matlab itself is not very well suited for dynamic, multi-threaded, Internet based, distributed computing.

5.2. Development

The following sections use the structural decomposition ideas of the 4+1 View Model (Kruchten, Philippe B., 1995) to present the workings of the Java Client/Server system from several different perspectives or views. UML diagrams (Roger Pressman, 1994) are used to expresses these views (Bengtsson, Bosch, 1999).

High-Level Design

The challenge of the Java development was to write a system to take 3D information from Matlab (Java class: MatlabConnector), feed them to a middleware tier (Server), which distributes this information to clients all over the world that animate VRML scenes using these operations (AppletConnector).

Physical View

To meet this challenge, it was decided that the three-tier system architecture, as detailed in the Architecture section, should consist of one Java class to integrate into Matlab, one to integrate into the Java Applet displaying the VRML (AppletConnector) and lots of classes in between to handle the conversion, packaging, transmission and queuing of data. The complete set of all Java classes is called “Virtual Reality Control” (VRC) and is encapsulated into a Java package of the same name (“vrc.jar”). The High-Level Design diagram below shows this graphically:

[image: image61.emf]Matlab Java Class

Matlab Java Class

Client Computer

Client Computer

Web Server Matlab Java Class Client Computer

vrc.Server.class

vrc.AppletConnector.class vrc.MatlabConnector.class

vrc.Server.class

vrc.Server.class

vrc.Server.class

Helper.class Helper.class

Helper.class

Helper.class

Helper.class

Helper.class

Helper.class

Helper.class

Internet

Internet

Figure 5.1: High-Level Design

The boxes with multiple “shadow-boxes” are significant. These indicate multiplicity. For example, there may be any number of client computers connecting to a web server, which may have a large number of separate class objects running in it. This server may connect to any number of Matlab programs, which also may contain a large number of Java helper classes to establish the connection, though only the MatlabConnector class directly interacts with the actual Matlab control simulation.

Dataflow

3D transformation information is central to the Java VRC system. The VRML objects move around or change size depending on output from the Matlab control simulation. This data is clearly the most important aspect in the system. Everything revolves around moving and manipulating it. The System Dataflow diagram below gives a good overview of the basics dataflow through the system:

[image: image62.emf]Receive Matlab

Data

Matlab

To-Server

Store

Package Data

Receive

Packaged

Data

Transmit to

Server

3D Operations

3D Operations Array

Timestep Structure 1

Timestep Structure 2

Timestep Structure 3

Matlab #1

Data Store

Associate

Data with

Matlab

Instances

Matlab #2

Data Store

Matlab #3

Data Store

Timestep Structure 4

Timestep Structure 5

Transmit Data

to Clients

Display

Queue (1.1)

Display

Queue (1.2)

Client #1.1

Receive Data

Client #1.2

Receive Data

VRML World

(1.1)

Execute 3D

Transforms

(1.2)

Execute 3D

Transforms

(1.1)

Timestep Structure 6

Timestep Structure 8.2

Timestep Structure 8.1

Timestep Structure 9.1

Timestep Structure 9.2

3D Operations 1.1

VRML World

(1.2)

3D Operations 1.2

Matlab #4

Data Store

Timestep Structure 7.2

Timestep Structure 7.1

Figure 5.2: System Dataflow

Matlab generates 3D operations and sends these to a Java class running in Matlab. This class collects the data and packages it up into Java objects, which are stored for transmission. A further Java class transmits this packaged data to server, which checks its origin and stores it in an appropriate object/data-store. The server takes this stored data and uses its knowledge of which clients want to receive information from which servers to copy and transmit appropriate Matlab data to the appropriate clients. The clients receive this data and queue it for display on the VRML world. The client applet continually takes the first item in its Display Queue, unpacks, interprets and executes the contained 3D Operation. This operation alters the VRML world and the user can observe the result.

This dataflow diagram contains three data-stores, one in each sub-system. These take the form of queues in the MatlabConnector, AppletConnector and the server’s classes. The amount of data stored in the system can therefore be expressed as follows:

[image: image63.wmf]j

i

A

M

D

+

=

*

2

 Equation 5.1: Data Stored by Initial System

Where Mi is the number of Matlab instances and Aj is the number of client Java applets, provided a single applet cannot receive information from multiple Matlab instances at once.

Initial Low-Level Design

This section goes into detail on the first design and implementation of the Java client/server system, also referred to as the VRC. A major incompatibility problem forced a fundamental shift in the system’s networking model midway through the project, leading to a second and final design.

This section purely covers the logical structure of the initial system in relation to RMI. If both sections gave a complete system overview, there would have been a large amount of repetition, since the redesign was primarily constrained to the logical structure. Only the “Final Design” section will therefore detail all sub-systems views, except for the physical view, which has already been addressed in the previous section.

Logical View

A logical view primarily supports the functional requirements of a system (Bruin de H, 1998). This logical view of the system is down to quite a low-level. This level of detail is possible, because the system is small enough to be able to comprehend in a single class diagram. A larger system would need to show a more high-level logical view.

[image: image64.png]Operation

String nodename
String fieldname
float[] fieldvalues

equals(object)
getNodename()
getFieldname()
getFieldvalues()
setNodename(nodename)
setFieldname(fieldname)
setFieldvalues(fieldvalues)

<< interface >>

<< interface >>

MatlabMessage AppletMessage
constantsChanged(constantsChanged(

worldname, constants) worldname, constants)
closeWorld(worldname) getBufferingTime(worldname)
openWorld(worldname) getConstants(worldname)
isOpen(worldname) getCurrentMatrix(worldname)

nextMatrix(worldname, matrix)

isOpen(worldname)

MatlabConnector

String filename

i

buildOperation(nodename,
fieldname, matrix)

buildPack()

connect()

connect(hostname)

getServer()

setServer(hostname)

timesteps()

RMIServer

int bufferingtime
String servername

RMI

AppletConnector

int between
int initialdelay

RMI »
constantsChanged(

worldname, constants)
getBufferingTime(worldname)
getConstants(worldname)
getCurrentMatrix(worldname)

Fetcher

Timestep

connect()
onEvent(event)
onEvent(type, object)
run()

start()

stop()

Operation[] operationsArray

equals(object)
add(operation)
getOperations()
pack()

constantsChanged(constants) isOpen(worldname) int minupdate
closeWorld() closeWorld(worldname) LinkedList queue
openWorld() openWorld(worldname) 1 AppletMessage msg
isOpen(worldname) nextMatrix(worldname, matrix) String worldname
flush() main(args) run()
1
*
*
World LinkedList
String id addArray(timesteps)
getBufferingTime() addOperation(operation)
getConstants() addStep(timestep)
*| getld() pop()
Constant getMatrix() size()
setBufferingTime(bufferingTime)
getPairs() setConstants(constants)
getValue() setld(id)
setValue() setMatrix(matrix)

Figure 5.3: Initial Design Class Diagram

The class diagram divides into three rough areas, as all previous diagrams have been to some extent. Ordered from left to right, the diagram focuses on the MatlabConnector, RMIServer, and AppletConnectior classes. These three run on different machine, as indicated by their names. Each of these main control classes also use a number of helper classes. Note that while the execution contexts of these classes may be distributed, the class structure itself is not. Each of the components in the system has the entire class structure at its disposal and can therefore make use of any of the helper classes.

RMI

RMI stands for Remote Method Invocation and is an API for multiple Java programs running on remote computers to interact using the Internet. It is part of the Java core library and therefore should have been usable in any Java Virtual Machine without downloading extra classes. RMI is used as follows (also see Initial Design Class Diagram):

A small object request broker (ORB) application, the RMIRegistry, and the RMIServer are started as either services or applicants on the web server. The difference between services and applicants is merely that services do not run as any particular user and therefore have permission to access the internals of the operating system. The RMIServer does not need these special permissions, so the difference is purely cosmetic. Once the server is running, the MatlabConnector queries the RMIRegistry for an interface to the server. The RMIRegistry returns a MatlabMessage object, which the MatlabConnector uses to execute the “openWorld” method on the server.

The MatlabMessage object is an interface, and by definition contains only method skeletons without executable code. Java’s RMI compiler application was previously used to generate stub and skel classes from the textual Java source code files. These compiled classes contain all the networking code to handle the specifics of connecting to a remote object and invoking a specific remote method using reflection. The MatlabMessage’s “openWorld” method calls the RMIServer’s “openWorld” method, though the process seems just like a normal local method call to both parties. The AppletConnector uses the AppletMessage object to connect to and execute remote methods on the server in the same way the MatlabConnector does.

The MatlabConnector gets Operation objects from Matlab. Matlab executes methods periodically to initiate a data transfer (Java method: flush) to the server. When the “flush” method is called an array of Operations objects encapsulated into Timestep objects is transferred to the server by a remote method call (nextMatrix). The server stores this array of Timesteps. Meanwhile, the AppletConnector’s Fetcher object makes remote method calls to the server at regular intervals (getCurrentMatrix). This method’s returns a Timestep array to the applet, i.e. the server’s current Timestep array is transferred to the requesting client. The client appends this array onto the end of a queue (LinkedList). The AppletConnector uses a single Timestep object off the front of this queue to alter the VRML applet’s VRML nodes at a constant frame rate. These alterations form an animation that the user can observe in his or her web-browser window.

Redesign

When a working prototype of the initial design was built and tested on a variety of operating system, it was found that the prototype did not function when running on a Windows machine using Microsoft (R) VM for Java, 5.0 Release 5.0.0.3805 (Java version 1.1.6), or any earlier virtual machine. Further testing revealed that RMI was the problem, that is, all applet remote method invocation calls failed. These failures were due to Microsoft’s virtual machine lack of Java RMI support, even though this technology is part of the standard Java API library. This problem does not affect web browsers on non-Windows operating systems.

Sun, the company that created and owns Java, sued Microsoft for creating and distributing a supposedly compatible version of Java which was actually incompatible. Sun won their case and Microsoft was forced to provide an upgrade to enable RMI. This upgrade is however very difficult to come by, 253 KB in size and required administrator security permission to install. This was clearly an unacceptable option: the upgrade would have made the applet 2.58 times larger, which would have meant a larger download for the user. It also would have necessitated the user trusting the system enough to allow it to make alterations to his or her machine, since the core Java library functions can only be overridden by a Java applet. Additional Java class files need to be copied into the “\windows\java” directory. Most versions of Windows require special permission such system directories. The project scope did not justify this level of user trust, nor did it want to dramatically increased applet download time, both of which the Microsoft’s RMI upgrade would have required (QSAD Utilities, 2002).

Remote procedure call technology choice

The only other option was to eliminate the need for standard Java RMI. A number of replacement options were explored:

Table 5.2: RMI replacement technology comparison

	
	IBM ClassBroker for Java
	Marquée XML-RPC Library
	Netbula Java RPC
	Microsoft RMI upgrade
	Karlsruhe University JavaParty (rmi-1.05b)
	Distinct ONC RPC/XDR Toolkit for Java

	Security level required
	applet
	applet
	?
	administrator
	applet
	applet

	Version requirement
	1.1
	1.2 - 1.3
	?
	1.1
	1.2
	1.2

	100% pure Java
	Yes
	Yes
	Platform dependent proxy class compiler
	Yes
	Yes
	Includes C code and CGI server

	Size
	62 KB
	87 KB + 1767 KB
	92 KB
	253 KB
	244 KB
	174 KB

	Documentation quality
	good
	adequate
	very poor (380 words)
	very good (Sun’s tutorials)
	adequate
	good

	Performance
	better
	slow
	?
	moderate
	better
	better

The IBM Classbroker for Java (JCB) (IBM: AlphaWorks, ClassBroker for Java, 2002) was selected as the best replacement option. The Microsoft JVM only supports Java versions up to 1.1.6. The JCB was the only option, besides the RMI upgrade, which did not require at least Java 1.2.0. It is also extremely small, and therefore quick to download as part of an applet.

Marquée XML-RPC (Marquée XML-RPC: An XML-RPC library for Java, 2002), can be discounted because of its enormous size. While the actual library itself is the second smallest of all technologies evaluated, it requires an XML parser to work. The recommended parser, Apache Xerces (Apache.org Java Parser 1.4.4, 2002), is 1767 KB in size, which is clearly far too large to download with an applet. XML-RPC requires Java 1.2, or even Java 1.3, for some useful features like dynamic proxy generation; a feature which the JCB also possess while only requiring Java 1.1.

Netbula Java RPC (Netbula LLC, 2002) is the solution with the second smallest actual download size for a potential user. It is however extremely poorly documented. The documentation consists of a single HTML file that provides one example of its use. Issues such as speed, security and Java version requirements are not addressed. The evaluation version of Netbula’s package also uses platform dependent executables to generate its proxy stub classes, making it “impure” Java.

As previously mentioned, Microsoft’s RMI (Microsoft RMI upgrade/patch, 2002) upgrade requires administer privileges to use from an applet. It also is quite large and slow, compared with other implementations.

The JavaParty library from the Karlsruhe University (JavaParty, 2002) would have been a good choice. However, it requires Java 1.2 and is larger than the JCB, making IBM’s solution the better choice.

The Distinct ONC RPC/XDR Toolkit for Java Version 4.0 (Distinct® ONC, 2002) a very complex solution. It uses CGI server-side code called through the Java native interface, which, besides being platform dependent, also is not implemented in the Microsoft Java VM, another issues in the aforementioned Sun/Microsoft legal case.

RMI vs. JCB

Instead of replacing the working RMI implementation of the VRC system with a new one based on the IBM’s JCB library, it could have been chosen simply not to support Microsoft’s non-standard technology. After all, a court case decision confirms Microsoft’s release as unlawful. However, Microsoft’s web-browser has a 73% market share (Web Review: Browser Guide, 2002). It was therefore necessary to support Internet Explorer, because not doing so would have eliminated more than two-thirds of potential users.

Additionally, the JCB provides some extra features that RMI does not. These further justify its choice:

Table 5.3: RMI vs. JCB comparison

	
	Core Java RMI
	IBM JCB

	Microsoft JVM support (Blundon, William)
	No
	Yes

	Ease of use
	Easy
	Moderate

	Size
	0 KB
	62 KB

	Dynamically generated proxies
	No
	Yes

	Distributed proxy garbage collection
	No
	Only with Java 1.2

	Remote stack traces
	No
	Yes

	Multiplexing and load balancing
	No
	Yes

	Remote application start-up
	No
	Yes

Most importantly, an applet running under the Microsoft Java Virtual Machine can use the JCB. The JCB does not however have the same wealth of documentation and tutorials that are available for standard Java RMI, since it is not the official standard, though the provided documentation and examples are good.

Being built into the Sun JVM, RMI does not require any additional download and therefore has an effective size of zero. It does not however generate proxy stub and skeleton classes automatically. A special executable, the “rmic” compiler must be used to generate these prior to running one’s program, whereas the JCB automates all this.

When run under Java 1.2 the JCB also automatically recovers the memory from these proxy classes when they are no longer used. Under Internet Explorer and the Microsoft JVM, these proxy classes remain after use and waste 14 KB of memory, which is an acceptable amount of memory leakage considering the hundreds of megabytes of memory available in most computers.

The remote stack traces the JCB provides help remote debugging of applications, since the pinpointing of errors can occur more quickly and accurately.

Since the JCB multiplexes remote connections, instead of streaming all data through a single socket, it can achieve better performance a system using RMI.

Finally, the JCB features dynamic application start-up. This feature might for example allow a connecting client to restart a crashed server automatically. In this case, a user would hardly notice a crash of the Java program on the server, though, of course, this would not be able to prevent the underlying operating from crashing.

Final Design

Logical View

The following logical view of the system shows the changes made to the system’s structure with the introduction of the Java ClassBroker.

[image: image65.png](Ouns
()sjueysuogysnd
(sdays)xuepysnd

(deysewn)daigppe

(ozis
()dod

Jaidde soepiajujeBessapualolelddy

ananb isrsdeigpexur

|

1(g0r)
! peaiyie/ddy$prom
i ¥
i anjeA s[anop L
()ozis | sweu buug (sdejs)sdersies
()dod I " (Opnes
(daysawn)dergppe ! d (SIUBISUOD)SIUBISUODIES
(uopesado)uopesadoppe | ﬁ (ounL Bupisyna)ow Buneyngles
(sdejsown)esyppe i (owiLBuLoyngIod
JsrawI paxur] i %MMM»__MN ()108uucosip
0 (1eidde)eiddyppe
0 Oanienob Siaidde 1000/
i ()sutediod 5eSSONIUBIOGENEN |- — — — — — — — — — —
qenew eoepslujeBessaNIuBIOAENEN
(JuaAs)paULIOpaJUONOE ! uesuoD swi 1 Buuayng i
Juap alolelddy i sousnbes 1ui
JsusisTuCgovIIeIDeIddy | * SJUEJSUOD JUEBJSUOD
” pi1 Buiis
! pHOM
I
1 ¥
i
I
|
[
(uns (Ouns
()dois ()onowas
Ouess ()sjueysuogysnd L
(sweisuoo)soepauIl (si6Bon)sjueisuogind (qepew
(1uens)usrguo (sdays)xueiixeu ‘Sjuejsu0 ‘sweupliom)puopuado
(xuieIuaUOdwonteB (s1UBISUOO)paBUBYDSIUEISUOD (sdajs *aweupLoM)XIBAIeU
()honsep 10N eoepBlujeBessapanIaSIalddy | - — = — -0 (J1oniagIeB KO- 7 = =~ —
ononb SITaWLLpesur] Todgowr| (8or (suesuco (8or)
19SMOIG JOSMOIE PEX sned ul ‘aUWeUp|IOM)paBUBYDSIUEISUOD
suwi 1 Buuayng Jur Anoxxew jul (1a1dde ‘aweupliom)oauu0d
usaMIaq U noswy ul swiyBuLeynq 1!
Jopauuooyaiddy waioreiddy JoniesED
\V (s;uesuco (qepew ‘sjueisuoo

Jsrisdeigpesur

*

(ppoed

()suopesadoled
(uonesado)ppe
(103lqo)sienbs
Feuysuopeiado [Juonesado

dejsouny

()dejsown job
()sousnbagied
(Jsousnbagyos

Souenbas Ju1
sdeysawn [Jdelsaw

sdoig

(sanjenplay)sanienpialios
(sweupjey)eweupiaIdies
(swieuspou)aweuaponies
()senjepioliob
()oweupjaijeb
()sweuaponied
(198lqo)sienba

senfenpioy [heoyy

sweupjay Bug
sweuspou Bupg

uonesedo

L« ainjonyis oA abesjoed

13

(uni
(sweupyom)puopuado
(sdays)xuepixeu
(siuejsuoo)peBuBLDSIUEISUCD

Joniss soepIuIEBESSONIBNIOSTENEN

uodgd Wi
esned ju
Anoyxew)
Inoswy Jul

(sjuejsuoo)sjueisuonabueyo
()pabueypsjueisuco
()sweisuoDied
(ysny
()oedpiing

(xujew ‘sweupjol

‘aweuapou)uojessdopyng
(siueisuoo ‘aweuppiom)popuado

SJUBISUOD SJUBISUOD
sweuayy Buing

waloqeReN

Jojauuoqene

(sders)xieNxeu
(syeysuoo)pabueyosiueisuod

auweuppoM)paBuUEOSIUEISUOD
(1e1dde *aweuppiom)osuuco

‘sweupom)popmuado
(S40}s *aLLIBUPHOM)XIBINIXOU

(suesuoo)paBueysiUeISUOD

soeyiajujeBessapIualOlelddy

<< ooepawt >

s0ej1ajujeBessapIaNIagIaIddY

<< oepon >>

S0B101U|9BESSONIONIBSAEREN

<< svepow >

soepiojUlEBRSSONIURIIOTEREIN

.« 'Seoepajul'oIA abesoed

,'2IA abexoed

Figure 5.4: Final Design Class Diagram

The class diagram can be divided into three-by-three areas. The first three areas are clearly marked out as the three distinct packages. Two sub-packages surround the main VRC package. The “structure” package provides a series of “helper” classes to the main set of classes, while the “interfaces” package provides the interfaces for the client classes to communicate with the server. The other division is vertical: The classes that interact with Matlab are on the left side, the server classes are in the centre, while the applet classes are to the right of the diagram. The structure classes do not quite fall into this division, since multiple tiers use them.

Some lines have aggregation ([image: image66.png]

) and composition ([image: image67.png]

) line endings. Aggregation is a part-of relationship. For example, a MatlabClient is part of a World object, but the two are actually separate from each other and can exist independently, in the same way a circle might have a certain colour. Composition, on the other hand, indicates that an object intrinsically belongs to some other object. If the parent object is destroyed this cascades down to all composite objects. For example, the Timestep object has a number of Operations that are intrinsically part of it; in the same way that a circle has a radius.

Connecting lines between classes attach to the method or variable that they specifically transfer from or relate to if this is relevant. Otherwise, lines to class names reference entire classes. Therefore, for example, when a connecting line going from the “buildOperation” of the MatlabConnector to the class name of the Operation class, this indicates that that method references the entire class. All connecting lines also have multiplicity number (1, *). These indicate classes with multiple references to other classes.

The use of the JCB instead of RMI is only apparent in the four dotted lines labelled with JCB. Each of these represents remote references/proxies that use one of the four interfaces. Since object-oriented classes encapsulate implementation changes, only minimal changes to the logical structure would have been necessary for the introduction of the JCB. However, the team thought it reasonable to take advantage of the lessons learnt from the first implementation to improve the system, since some changes would have been necessary either way.

One of the most significant results from changes between the first and second implementation is the use of four JCB connections instead of three RMI connections. The new design therefore has full four-way communication of both the Applet and Matlab through the Server. This eliminates the need for a “Fetcher” class in the applet, since the server directly “pushes” the data to the client applets, rather than the clients having to “pull” it from the server. This is both faster and eliminates unnecessary network traffic.

Another consequence of this four-way communication is that applet users can “remote control” Matlab by changing various variable parameters. The diagram refers to these changeable parameters as “Constants”, since the term “variables” would have been misleading, given that object instance variables are referred to as “variables”. An example of one of these “Constants” might be the elasticity of a bouncing ball in a simulation.

In additional comparison with the initial class design, this class diagram is more “clean” and symmetrical. Both the AppletConnector and the MatlabConnector have a client class which sits between them and the server, providing some encapsulation and thereby making this system better able to cope with change, such as the later addition of new features, such as the one just mentioned.

Development View

The following package diagram, sometimes also called a collaboration diagram, gives a view of how the different packages of the VRC work with various external library packages. These packages are the same as the package shown in the logical view class diagram. This view is useful for analysing the dependences between packages for improved debugging, testing and version tracking.

[image: image68.emf]blaxxun

bx3dExt.tools

x3d

vrc

vrc.interfaces vrc.structure

com.ibm.jcb

com.ibm.jcbimpl

Figure 5.5: Package Diagram

Here is a package-by-package listing of encapsulated functionality:

com.ibm.jcb: The main IBM Java ClassBroker package.

com.ibm.jcbimpl: A package containing the underlying networking implementation of the IBM Java ClassBroker.

vrc: The main package of the Java client/server system.

vrc.structure: A helper package of the Java client/server system consisting mostly of data structures.

vrc.interfaces: A helper package of the Java client/server system consisting of communication interfaces for use with the JCB.

bx3dExt.tools: A package consisting of a single class used only for connecting to a running blaxxun3d VRML display applet.

x3d: A package of data structures and wrappers for use in the blaxxun3d applet.

blaxxun: The main blaxxun3d package to display a 3D VRML world in a Java applet.

Package dependencies are not transitive. If package A is dependent on package B, and package B is dependent on package C, package A is not dependent on package C. IBM could therefore for example change the underlying implementation of the JCB without functionally affecting the VRC in any way. It would consequently be straightforward to, replace the TCP based socket communication with the quicker but more unreliable UDP protocol.

Cyclic dependencies destroy this intransitivity property, so it is best to avoid them whenever possible. One might therefore consider moving the World class into the main VRC package in future versions, thereby eliminating the two-way dependency between the helper packages. As it is now, altering an interface class might require a change in the “vrc.structure.World” class, as well as the main VRC classes.

Process View

The process view deals with concurrency and synchronisation issues, both of which have not yet been touched upon. These issues are extremely important for non-functional requirements, such as performance, stability, accuracy and scalability. They also present one of the biggest challenges (Mayers, Chris). UML activity diagrams allow the exploration of activity states and transitions. These diagrams are very good at modelling parallel behaviour. They do not however model objects or collaboration, the logical and development views presented these respectively. This diagram is similar to the data flow diagram in the initial design section, though it focuses on states and concurrency, rather than just data.

[image: image69.emf]JCB

Matlab * Server Control & Display Applet *

Monitor User Interface Adjust Constants Receive Constants

Send Constants Send Constants *

Calculate Transform

Pause

Apply Transform to Display Applet

Display Animation

Send Transforms *

Send Transforms

Store Transform

Receive Transforms

Queue Transforms Dequeue Single Transform

Receive Transforms

Queue Transforms * Dequeue Transforms *

Package Transforms

JCB

JCB

Apply Constant Changes

Receive Constants Adjust Constants

JCB

JCB

Receive Constants

Figure 5.6: Activity Diagram

The diagram shows three so-called “swim lanes” that convey areas of responsibility. These divide between activities occurring in Matlab, the Server, and Applets. Communication across these lanes uses an Internet network connection and the JCB. It is important to note that this diagram only shows activities in an already running system. A later section on the JCB will address the messages involved in the “handshaking” which initiate connections between systems.

Asterisks (*) next to activity or swim lane name indicate multiplicity. As, for example, there may be multiple instances of the Control & Display Applet. If this is the case, the server will use multiple queues, which multiple concurrent send procedures access. Multiple instances of Matlab result in multiple concurrent sends of changed simulation “Constant” variables. Instead of using multiple queues, the server could have used a single concurrently accessible queue. However, this would have necessitated more complex control logic to track which queue items to send to which clients. Multiple queues provide a simpler, more manageable and more rapidly programmable solution at the expense of increased memory usage. This increase would only become significant if the system were concurrently serving thousands of clients. The following formula expresses the increased memory usage of the final system design:

[image: image70.wmf])

(

*

2

j

i

A

M

D

+

=

 Equation 5.2: Data Stored by Final System

Where Mi is the number of Matlab instances and Aj is the number of client Java applets, provided a single applet cannot receive information from multiple Matlab instances at once. This is an increase of “one times A” from the previous formula.

The ability of a user to alter some aspect of the simulation was a requirement that initial prototype design did not implement due to time constraints. It was however included in the design process, so adding it in as the JCB was being introduced did not present much difficulty. This ability to add a new feature with a minimum extra development effort solidifies our claim of having chosen a very expandable architecture.

The thick horizontal lines represent forking of control, or multithreading. All activities branching off from these forks occur simultaneously. There is no need for synchronization by mutex locking, or semaphores due to use of queues. All data is queued, after transfer between systems. The enqueue and dequeue operations are atomic, and therefore thread-safe. This means the system will never exhibit the unpredictable behaviour that unsafe multi-threaded access can result in. Another reason to avoid locks is that they can slow a system significantly, if many threads are vying for the same lock. Queuing avoids this potential performance bottleneck.

While Java’s inbuilt multithreading capability simplifies the creation of threads (NASA, 2002), Matlab makes it almost impossible to implement multiple simultaneous threads of execution. It seems the only way to have parallel operation in Matlab is to use an add-on, or create a Fortran, C or Java program on top of Matlab (SGI-Cray Origin2000 Supercomputer Repository, 2002). The use of a three-tier architecture avoids imposing multi-threading on Matlab. The activity diagram shows no multithreading in the Matlab “swim lane”. Matlab linearly computes the necessary 3D transformation, calls Java methods to transfer these to the server, waits for this synchronous remote method call to return, pauses for the exact time it would take to display those 3D transformation, checks for and applies changes to the “Constants”, and repeats. The pause is further explained in the “Timing and Control Wrapper” section.

The applets' “swim lane” shows three threads. One to receive and queue 3D transformations, another to display these, and a third to monitor the user interface for activity and send resulting “Constant” changes to the server. The server will forward these changes to all other connecting applets and, of course, to Matlab. The applets have a check built into them to prevent them from responding to their own changes. The blaxxun3d VRML display applet also uses a number of threads. The exact number is however hidden in the implementation’s compiled code and therefore unknowable.

Final Implementation

This section goes into detail on how each VRC components works. The diagrams in this section are simple box diagram and use the full UML standard. Their objective is merely to reinforce the textual description, not to provide a detailed specification. Moreover, UML is meant for design, not implementation; it would have provided inappropriate information, if used in this context.

Matlab Interface

The Matlab interface consists of the MatlabConnector and MatlabClient classes. The MatlabConnector interacts with Matlab and Simulink and uses the MatlabClient to interact with the server. The MatlabClient interacts with the server and uses the MatlabConnector to interact with Matlab.

[image: image71.emf]MatlabConnector 1

MatlabConnector 2

MatlabClient

Matlab

m-file 2

m-file 1

Static Variables

Static Variables

Simulink CBServer

JCB

Figure 5.7: Matlab Interface Implementation

A Matlab m-file imports the MatlabConnector class, initialises the object and calls its methods. The methods dealing with updating “Constants” access “static variables” which are persistent through all object instances. This is necessary, since no way of sharing object references between Matlab m-files was found. Using static variables, different Matlab m-files do not need to access the same Java object, they can simply create new objects as necessary and these automatically contain data from the original object. In other words, there is a single variable shared between all instances of the MatlabConnector class.

Java CBServer

The Java ClassBroker Server consists of the CBServer and World classes.

When the MatlabClient calls “openWorld” on the server through its JCB interface, the server accepts this connection and retrieves the World object Matlab specifies it wants to open from a hash table, or creates a new one. It was thought to be important to have the initial connection handshake complete as quickly as possible. With possibly thousands of clients hosted through a single server, a hash table is the quickest key-value pair retrieval method possible. The extra memory a hash table uses is insignificant compared to the size of World objects.

[image: image72.emf]Steps

Timestep

Operation

Operation

Operation

Fieldvalues

Fieldvalues

Nodename

Fieldvalues

Fieldname

SequenceNumber

Figure 5.8: Steps object deconstruction

If the “openWorld” operation succeeds, which it should, provided a network connection is present, Matlab starts transferring 3D transformation data. The data sent in each transfer is an array of Operation object wrapped up into a “Timestep” object, these are in turn wrapped up into an array of “Timesteps”, which is wrapped up into a “Steps” object. When this Steps object arrives from Matlab, the CBServer sets the sequence number in it, so that a sequencing mix up does not cause problems in the eventual display. Now the server uses the hash table to retrieve the correct World object and uses its “setSteps” method to assign the Steps object. These Steps then are queued for transfer to all connected applet clients.

An applet connects to the CBServer by calling the “connect” method on the server. This works in a similar way to the “openWorld” call from Matlab, except this call has a return value. It returns a set time the applet should wait before attempting to display the animation. This buffering period prevents empty display queues, to avoid the otherwise resulting “jumps” in the animation due to variable network latency. The CBServer assigns connecting applets to the World by calling the World’s “addApplet” method. The World maintains a separate AppletThread object for each connected applet. As the name implies, each instance of this object launches a new thread. Newly arrived Steps are immediately copied onto the end of each AppletThread’s queue of Steps (LinkedStepsList). The threads periodically check these queues and transfer any queued items to their appropriate applet.

JCB Communication Protocol/Interface

[image: image73.emf]Server Host

Applet Host Matlab Host

Client

Proxy

MatlabClient

CBServer

JCB JCB

Client

Proxy

AppletClient

JCB

Server

Proxy

Server

Proxy

Figure 5.9: Conceptual JCB Client/Server interactions (Lee, Kent, 1999)

The IBM Java ConnectionBroker replaces the RMI library in the VRC system. It handles remote procedure calls using a system of proxies. The JCB runtime automatically and dynamically generates these proxies from the interface definitions in the vrc.interfaces package. It creates a proxy from each of the interfaces.

When using a static server method to connect to the server, a client host transfers its proxy/interface. The server may then use this proxy to call methods on the client. During this handshake phase the server will also give a copy of its own proxy to the client, so that the client may also call methods on the server. The proxies and the JCB do all the networking. For the hosts using them, they look like, and indeed are, just local objects.

There is however one difference between local object and JCB proxy object: method calls pass object by value, copying an object to the remote machine, rather than just passing a reference, which is what Java would do when using an object as a parameter in a normal local method call.

It is worth noting that a system administrator does not need to start the CBServer on the server machine. He or she must only load a JCSupplier (“java com.ibm.jcb.JCSupplier”) that has access to the compiled server code. The JCSupplier is part of the JCB distribution. It sits on the server listening connections on the default server port (4097). When a client attempts to connect to the server, the JCSupplier loads the server on the fly. Similarly, if the server should ever crash, the JCSupplier will keep running and restart the server the next time a client attempts to access it, causing only minimal disturbance to the system, though clients would need to restart running simulations. However, in practice, clients are far more prone to crash than the Java CBServer application. Simulink was found to be particularly prone to freeze and/or crash.

Java Control Applet

The main control Java applet consists of the AppletClient, AppletConnector, and AppletConnectorActionListen classes.

[image: image74.emf]Control Applet

AppletConnector

AppletClient

AppletConnector

ActionListener

CBServer

monitor each

other's threads

3D Transformation

3D

Transformations

3D Transformations arrays

UI Events

“Constants”

change

“Constants”

change

Blaxxun3D

Applet

Connect

Translate, Rotate, Scale

Connect

Connect

Queue

Figure 5.10: Java Control Applet implementation

The web page the user sees contains the AppletConnector applet. As soon as it is loaded it creates a new AppletClient thread. This client then proceeds to connect to the blaxxun3d applet, which itself is often still in the process of loading at this point, the server, using the Java ClassBroker, and the AppletConnector display thread, which the client itself starts up. If any of these connections fail, the client will retry connecting 30 times with a short delay between each attempt. The AppletConnector display thread takes a set of 3D operations off the front of a queue at a constant rate. Meanwhile, the AppletClient adds Timesteps operations received from the server to the end of this queue. This cooperation between these two classes helps stability. If one of the mentioned threads should ever crash, the other can detect this and restart the crashed thread. Irrespective of which thread is lost, the queue remains and the system continues to work.

The frame-rate, i.e. rate of taking Operations off the queue and displaying them, is set to 20 frames per second. Care had to be taken to optimise the thread running this animation code to execute as quickly as possible, since it has to run continually at high speed. Since the execution of the animation takes time, the executor thread cannot simply suspend operations for 50 milliseconds between each frame, as this would result in the animation gradually falling behind. Testing revealed that this length of time was very variable, sometimes even taking longer than the 50 milliseconds. The executor thread therefore calculates the length of time it needs to suspend itself to match maintain a constant frame rate. The thread suspends itself for this length of time, minus an estimate of the time it took to do that calculation. If the execution of one frame takes longer than the time needed to display two frames, i.e. 100 milliseconds, the second frame is skipped to allow the applet to catch up. This usually only occurs on older computers or on systems where many other applications competing with the applet for processing time.

Upon connecting to the server, as seen in the Java CBServer section above, a buffering time is returned. The server would ideally dynamically adjust this time based on the latency the applet-server connection. The current implementation however simply returns a constant value, 1500 milliseconds. The applet waits until 1500 ms worth of 3D transformation operations have built up in the queue and then beings displaying these. If the queue ever empties completely, the animation pauses/re-buffers until the queue again contains 1.5 seconds worth of data. Exact synchronization for the most accurate control simulation would be desirable, but sadly is impossible (Vuorimaa, Petri, 2001).

The AppletConnectorActionListener monitors any user interaction with the AppletConnector applet user interface. If a user changes a “constant” value and presses the apply button, this event picked up by this listener. The listener then calls the AppletClient, which, using the JCB, calls the “constantsChanged” method on the server. The server passes an object encapsulating the newly modified “constants” to Matlab and all applets viewing that particular world. Any users may change any of these “constants” at any time during the simulation, though there will, of course, be a slight delay until the change takes effect, as further explored in the Timing and Control Wrapper section.

Since the applet’s application area is scientific, it was thought to be reasonable to assume that all users can be trusted to not continuously or maliciously alter “constants”. If a user erroneously changes a “constant” to a value that ruins a simulation, any user also has the power to correct this by restarting the simulation. If the above assumptions ever change, it may become necessary to disable the “constant” changing system for a certain clients. Ideally, the server should be able to set this parameter. Future version of the VRC system might include this extra functionality.

[image: image75.emf]Translation Rotation Scaling

Figure 5.11: 3D Transformations

The animation works by calling methods in the blaxxun3D applet that modify a named 3D node object. These objects can be transformed by translation, rotation, and/or scaling. Combinations of these three operations allow an object to be repositioned in every possible way. The Matlab simulation’s “datasink” file specifies which of these operations to use by setting the Operation fieldname.

5.3. Summary

The Virtual Reality Control system consists of a Java Matlab plug-in, a Java server and several Java applets. Each of these components is entirely independent the 3D worlds and the specific Matlab simulation. By using the VRC, a Matlab control simulation can be integrated with a lightweight 3D display applet on a web page without requiring any installation. The system further allows a very large number of users on multiple platforms to view and interact with these complex simulations.

A necessary redesign due to incompatibility issues resulted in a significantly improved, quick and scaleable message queuing system architecture.

6. THREE-DIMENSIONAL ILLUSTRATIONS FOR THE CONTROL DEMONSTRATIONS

A variety of different tools and techniques are used to build three-dimensional worlds for applications such as games, e-commerce, data visualisation, entertainment and web animations. Three-dimensional graphics and animation are produced in standard software packages, such as 3D Studio MAX (Discreet, 2002), Maya (Alias Wavefront, 2002) or Lightwave3D (Lightwave, 2002) . These packages are very complex; learning to create, texture and animate models using the standard applications requires months of study and most of these software packages are quite expensive.

For this project, it was preferable to use software that was easy to learn, if possible free and viewable without extra download requirements for the user, since it was agreed from the beginning of the project that the system would not require the download and installation of specific applications. Ideally, the software used would be free, in view of the fact that if the project’s aims can be achieved with free tools of similar quality to commercial ones, it will be useful to a wider variety of people. The Virtual Reality Modelling Language (VRML) (Web3D Consortium, 2002) was chosen as a tool to design and present the interactive three-dimensional content, since it fulfils all the above requirements and had the advantage of being already used by Mathworks’ VR-Toolbox (Mathworks, 2002), allowing testing to be performed in the early stages while the system design was not yet complete. Moreover, there are many available objects on the web that can be downloaded to create more realistic worlds.

Authoring VRML worlds can be accomplished using a simple text editor, where an object’s shape is defined by hand. For complex objects, this can quickly become an extremely difficult and time-consuming task. In order to construct more realistic VRML worlds, various modelling tools such as Blender (Blender, 2002) and MilkShape3D (chUmbaLum sOft, 2002) were used to create and improve objects downloaded off the Internet.

In summary, VRML was chosen to present the virtual environments to the user. Several modelling applications, described in more detail below, were used to create three-dimensional illustrations of the control models developed.

6.1. Software Overview

To create and develop the worlds for the control demonstrations various software packages were used. The worlds developed for the control demonstrations used VRML. Blaxxun3D (Blaxxun Interactive, 2002) was used for VRML visualisation to allow users to view and interact with the developed worlds. 3DExploration (Right Hemisphere, 2002) was used to convert downloaded objects into the VRML file format. Other modelling tools were used such as Blender and MilkShape3D in order to create more realistic worlds.

Virtual Reality Modelling Language (VRML)

VRML is an acronym for Virtual Reality Modelling Language. This was the primary language used to create and develop three-dimensional demonstrations for control system examples. As referred above, VRML was chosen as it was easy to learn, available without a browser plug-in, it was already used by Mathworks’ VR-Toolbox, there are many objects on the web that can be downloaded and it is free.

VRML was created in 1994 by combining elements of the Open Inventor program file format, which was a program to design and build an infrastructure for interactive three-dimensional graphics applications, with World Wide Web features, such as WWWAnchor and WWWInline nodes.

 In 1996, the VRML 2.0 specification was released and the International Standards Organisation's (ISO) committee agreed to publish the version of VRML 2.0 as a Draft, which was submitted in April 1997. This Draft is known as VRML97 and is published as an ISO standard. The next version of VRML will be the Extensible 3D (X3D) (Web3D Consortium, 2002). The geometry and behaviour capabilities of VRML97 using the Extensible Markup Language (XML) (World Wide Web Consortium, 2002) are being studied so that the X3D Graphics Working Group is able to design and implement X3D.

According to ISO/IEC 14772-1:1997, the Virtual Reality Modelling Language (VRML) has been designed to fulfil the following requirements (Web3D Consortium, 2002):

Authorability: Enable the development of computer programs capable of creating, editing, and maintaining VRML files, as well as automatic translation programs for converting other commonly used three-dimensional file formats into VRML files.

Composability: Provide the ability to use and combine dynamic three-dimensional objects within a VRML world and thus allow reusability.

Extensibility: Provide the ability to add new object types not explicitly defined in VRML.

Be capable of implementation: Capable of implementation on a wide range of systems.

Performance: Emphasize scalable, interactive performance on a wide variety of computing platforms.

Scalability: Enable arbitrarily large dynamic three-dimensional worlds.

VRML97 was used in this project. This version differs from the earlier one, VRML 1.0, as it features animations and it allows the user to interact with objects. The advantage of being able to animate objects was used to create more attractive and realistic worlds.

Although VRML means Virtual Reality Modelling Language, technically speaking, it is debateable if the name is correct since virtual reality typically implies an immersive three-dimensional experience, such as a head-mounted display, and three-dimensional input devices, such as digital gloves, and VRML neither requires nor precludes immersion. Furthermore, modelling languages usually contain richer geometry modelling primitives and mechanisms than offered by VRML.

VRML can be described as a three-dimensional analogue to HyperText Markup Language (HTML) (World Wide Web Consortium, 2002). This means that VRML serves as a simple multi-platform language for publishing three-dimensional web pages. Simplicity is an important design constraint, since it is believed that the success of the HTML file format is due to its easiness. VRML provides the technology that integrates three dimensions, two dimensions, text and multimedia into a coherent model. These media types combined with scripting languages and Internet capabilities are able to create interesting types of interactive applications, as was required in this project.

VRML describes interactive three-dimensional objects and worlds. A world is a three-dimensional environment, which can contain three-dimensional objects, lights, and backgrounds. Each object is defined in terms of its geometry in the three-dimensional space, specifically the x, y and z coordinates of the points that make up each surface. For example, a file containing a three-dimensional model of a rectangular room might consist of the x, y and z coordinates of each corner of the room. Objects can be built from solid shapes, primitive points, lines, and faces. They have optical material properties which affects how they interact with the lights in the world, they can also have textures, two-dimensional patterns, applied to them. Objects can be grouped into complex objects, used multiple times, translated, scaled and rotated. VRML files may contain references to files in many other standard formats, such as JPEG, GIF, and MPEG files, which may be used as texture maps on objects. In JavaScript or Java, VRML object properties can be manipulated, as done in this project, and new objects can be generated.

VRML97 models can be shown using a VRML viewer, such as Blaxxun3D. The user usually interacts with the world shown on a computer monitor by using the mouse and the keyboard. Blaxxun3D will be explained in more detail below.

Blaxxun3D

There are several VRML viewers, but most of them are plug-ins, i.e. they require the download and installation of a large application that integrates into the user’s web browser, such as Blaxxun Contact (Blaxxun Interactive, 2002). There are some plug-in-less viewers, in other words, viewers that do not need to be downloaded, such as Shout3D (Shout3D, 2002); however, this is a commercial viewer. This project required a viewer that was preferably free and plug-in-less, since it was agreed that the web page would not need any extra downloads in order to be easier and trustworthy to the user. There are only few viewers that fulfil this requirement.

Blaxxun3D was selected because it is free, it is plug-in-less, and as it has a small file size to enable rapid transmission of the three-dimensional viewer, as well as, more extensive object display. Blaxxun3D enables three-dimensional content viewing without any plug-in, since it requires no download or installation and it is automatically loaded on the website when a visitor opens a web page that contains the applet. This means that no technical or content adjustments must be made. Since it is completely transparent to all web page visitors, it is displayed with the other page content, as a Java-applet. In addition, Blaxxun3D allows full access to every VRML node it displays using either Java or JavaScript, as well as, having configuration options, such as the ability to set the background colour in the web browser, anti-aliasing and bilinear filtering. Blaxxun3D brings VRML objects to the screen allowing animation and interaction with the world.

The Blaxxun3D wizard is a tool to produce applications with Blaxxun3D. This tool prepares an HTML framework for the file to be viewed and optimises the VRML for faster downloading.

Some disadvantages of Blaxxun3D are that it does not recognise certain VRML nodes, such as certain geometry and light nodes. It also does not load textures unless each object specifies its texture coordinates; most VRML viewers attempt to calculate these if they are not defined. Another problem that was encountered with Blaxxun3D is that some of the curved surfaced geometry primitives, such as spheres and cones, were not being drawn smoothly enough compared to the designed objects. This problem was overcome by creating these geometries in a modeller so that they looked smooth like the rest of the objects.

3DExploration

Some of the objects used to create the three-dimensional demonstrations for the control examples were free objects downloaded from the Internet. These objects were not always in the VRML file format, therefore it was necessary to use a converter, such as 3DExploration.

3DExploration was used since it recognised and converted many different three-dimensional file formats, such as 3D Studio, LightWave, Caligari, DirectX, AutoCAD, and two-dimensional Bitmap and JPEG files, which are useful as textures. It is also quite fast, since it has OpenGL hardware accelerator support, making the best use of a computer’s graphics card.

3DExploration was created by Right Hemisphere (Right Hemisphere, 2002). The program features a number of export options, for instance, copy to clipboard or export as other three-dimensional and two-dimensional file formats. 3DExploration can be used to create high quality renderings of three-dimension objects and scenes for use in several other graphic applications.

Navigation tools included in 3DExploration incorporate the ability to explore three-dimensional objects and scenes from various locations, distances and angles with optional light source settings. 3DExploration allows modifications and saving three-dimension file attributes such as textures and geometry transformations, translation between different three-dimensional file formats including animation support between different formats and batch conversion of files.

Another useful feature of 3DExploration is the ability to select parts of the object and identifying the name of that part given in the file. This can be important to identify and locate parts of the object when editing it.

Blender

Some of the objects used in the VRML worlds developed were created from scratch, and some others downloaded needed some modifications that were easily done using three-dimensional modellers. Blender (Blender, 2002) was used for modelling objects because it is free, it is cross-platform and there are many online resources and tutorials to learn how to use it.

Blender is a three-dimensional graphics suite with a three-dimensional interface designed for modelling, rendering and post-production. It is freeware, and could be freely downloaded to be applied for any purpose, excluding commercial distribution, on the Not a Number (NaN) company's official website. However, in March 2002 the shareholders and directors of NaN Holding BV, owners of Blender, applied for its bankruptcy at the Amsterdam court. NaN is currently undergoing a re-organisation of the company. (Blender, 2002)

The major problems when using Blender is that importing and exporting objects with textures can be problematic, since these may not be supported, and it is initially difficult to learn as it uses many keyboard shortcuts and a three-button mouse; however it becomes extremely intuitive once a user becomes familiarised with it.

MilkShape3D

MilkShape3D (chUmbaLum soft, 2002) was also used to modify downloaded objects. It is a low-polygon modeller, which was initially designed for Half-Life, a popular computer game (Half-Life, 2002). During the development, many file formats have been added. It supports currently several different file formats from various different games, engines and programs.

MilkShape3D has basic operations like select, move, rotate, scale, extrude, turn edge and subdivide. It also allows low-level editing with the vertex and face tool and primitives like spheres, boxes and cylinders are also available. MilkShape3D has also extensive animation capabilities, which enables the use of an even larger variety of models and objects.

Although the editing tools seem crude when compared to a program like Blender, MilkShape3D excels in importing and exporting other file formats, as it can handle textured objects and animations. MilkShape3D was mainly used when an object could not be loaded into Blender.

6.2. Developed Worlds

The project’s aim is to provide an online virtual reality control systems web page. An important part of the project is to choose a set of control systems that could demonstrate the different capabilities of the system.

The Matlab VR-Toolbox (Mathworks, 2002) comes bundled with various control systems examples, some of which were chosen to be developed as virtual worlds. These included a bouncing ball, an aircraft flying over a landscape and a radar tower. They were chosen because they would be easier to set up and test and since exclusively developing own control systems was beyond the scope of project. However, the constructing of control systems was also advantageous as some of the more complex models provided by Matlab would have taken too long to understand. The developed control systems were the pendulum and the Newton’s cradle.

Another objective of the project was to provide virtual worlds that would appeal to the system’s users. A substantial effort was taken to populate the worlds with other objects not directly related to the control simulation, but which made the world more realistic and more attractive.

Three-dimensional graphics content creation software packages are expensive and very complex, requiring a long time to learn. Three-dimensional modelling is an extremely time-consuming task; it would have taken a very long time to model all objects from scratch. Perhaps most crucially, the creation of attractive models requires both technical and artistic skills, which were not in the scope of the project. Therefore, many of the developed worlds in this project used existing objects found on the web allowing the worlds to become more appealing.

Acquiring the desired objects required a large amount of Internet research, as often models were of low quality, or did not work at all. Also, the objects could not have a large file size, otherwise the worlds would take too long to load and be slow to view. A polygonal reduction program was used in an attempt to reduce the complexity of large objects, called 3Dreducer (3DReducer, 2002). However, this software produced poor results as it destroyed parts of the objects when reducing them. The size of the designed worlds varies approximately from 50Kb to 500Kb when compressed, which is reasonable for slow Internet connections, the largest world takes approximately 90 seconds to download, and perfectly acceptable for those with fast Internet connections.

Various Internet pages have free downloadable objects, such as the 3DCafe website (3Dcafe, 2002) and the Turbosquid website (Turbosquid, 2002). Another page that was used is the 3DLinks website (3DLinks, 2002) that has several links to web pages with free objects to download.

Several of the objects downloaded needed to be modified; this process is described in more detail for each world below. Another important feature, and perhaps the most important, when developing a world with different objects is that they all should have the right scale. Therefore, effort was made to try to scale the objects used in the worlds. In addition, all worlds used a textured hemisphere sky placed over the extent of the scene, so that the worlds look more realistic. This object was modelled in Blender and exported.

The objects that were animated by Simulink (Mathworks, 2002) for the control demonstrations were given a specific name in the world so that the Java system could interact with them.

In summary, the three-dimensional worlds created for the control systems demonstrations used various software packages to create and modify objects downloaded from the web. The created worlds are described in more detail below.

Bouncing Ball

The bouncing ball was the first model to be developed. The aim of this model was to show a ball inside a box with Simulink controlling its movement.

The world was used as a way of learning and becoming familiar with the VRML language. The entire world was developed using simple VRML nodes, such as cones, cylinders and spheres. For instance, the windmill was made from cylinders and cones.

The world uses a grass texture for the ground, and a textured hemisphere sky, as described above. The airplane was downloaded from a website, but some modifications to the object were done, for example, propellers were added. These propellers and the windmill sails were programmed to rotate. The airplane was also programmed to move around the created world. The box around the ball has no top and has transparent material properties so that the ball can be seen bouncing within it.

Problems that occurred when using Blaxxun3D while developing this world were that Blaxxun3D did not load the textures and some of the curved surfaced geometry primitives used, such as spheres and cones, were not being drawn smoothly enough when compared to other objects. These problems were overcome by specifying the texture coordinates and by creating the curved surfaced geometries in a modeller so that they looked smooth like the rest of the objects.

Figure 6.1 shows the world with all the objects created. Figure 6.2 is a close up of the world in order to get a better view of the ball and the box surrounding it.

[image: image76.jpg]

Figure 6.1: A View of the Bouncing Ball World

In Figure 6.2 below, it can be seen that the ground is not very well defined, as some lines can be perceived. This is due to the image used as a texture being scaled up to the size of the world’s ground.

 [image: image77.jpg]

Figure 6.2: A Close-up of the Bouncing Ball World

Radar

The radar world was mainly developed to show a radar that would track an airplane. The phantom airplane shows what the radar is tracking and the “normal” airplane shows the airplane that the radar should track. Therefore, if the phantom airplane is superimposed on the normal airplane this means that the radar is tracking the airplane perfectly.

The phantom plane is slightly larger than the real plane so that when the two aircraft are superimposed the phantom aircraft is still visible. This provides visual feedback, enabling the user to differentiate between the “normal” aircraft being tracked perfectly and the phantom plane being off the screen. A picture of the airplanes superimposed is shown in Figure 6.3.

[image: image78.jpg]

Figure 6.3: Superimposed Airplanes

The designed world represents a military airport. The airfield and the airplane were downloaded from web pages, while the radar was created with Blender. The phantom airplane was developed from the original downloaded airplane by changing material properties, for instance replacing textures with transparency properties and scaling it up. A picture of the world can be seen in Figure 6.4.

[image: image79.jpg]

Figure 6.4: Radar World

This world and the F14 world have a camera tracking the planes so that the user is able to follow the planes while they fly around in the world.

In this world and in the F14 world, the plane quickly moves outside of the world boundaries. The simplest idea to avoid this would be to design a very large world, however when doing this, the Blaxxun3D viewer had trouble drawing overly large geometries; for instance the planes did not appear in the world and the objects appeared disfigured. The possibility of using a spherical or cylindrical world and rotating the axes accordingly was considered for the F14 and the radar worlds. However these worlds would also have to be big enough so that it would not be noticed that the objects placed in the world were curved. Attempts were made to program a terrain generator, but this was time consuming and unnecessarily complex since there would have been trouble in adapting the terrain generator to Blaxxun3D, as this does not accept the geometry node produced by the terrain generator.

F14

The F14 control model needed a three-dimensional demonstration that showed an F14 flying.

Initially, the F14 world was thought to be designed as an island in the middle of the ocean. An attempt was made to design the island using a trial version of Bryce (Corel, 2002), a commercial modeller to create terrains; however, the results were not pleasing since the program was quite complicated to learn.

In the end, a landscape was designed, where all of the objects, namely the house, the trees, Stonehenge and the airplane, were downloaded from web pages, except the mountain and the sky. The sky was created as described earlier. The mountain was downloaded from a web page, but it was stored as an elevation node, a feature that Blaxxun3D does not support. When the file was converted in 3DExploration, it became a very large file, as the mountain’s geometry was extremely detailed. The mountain was therefore redesigned using the texture of the original file and a smaller amount of data, which reduced the size of the file. The originally downloaded airplane was changed; its wheels were taken off, as the airplane is not taking off or landing in the picture. A picture of the world can be seen in Figure 6.5.

As mentioned above, this world has a camera associated with the plane in order for the user to be able to follow the airplane while it flies in the world.

[image: image80.jpg]

Figure 6.5: F14 World

Newton’s Cradle

The Newton’s cradle model would allow the user to interact with, as its name implies, a Newton’s cradle. It was therefore necessary to create a world that included a Newton’s cradle.

A world was designed where the Newton’s cradle is represented as a decorative object in a room in a house. All the objects inside the house were downloaded from websites, except the Newton’s cradle that was developed using Blender. The house is made from rectangular planes and the window is also a rectangular plane; however, its transparency material property is set to a low value making the window see-through.

In order to model the Newton’s cradle in Simulink, the spheres and the cables needed to be to be grouped and rotated in relation to a point. This was modelled in Blender.

Figure 6.6, Figure 6.7 and Figure 6.8 show different views of the Newton’s cradle world.

[image: image81.jpg]

Figure 6.6: A view of the Newton’s Cradle World Showing the Newton’s Cradle

[image: image82.jpg]

Figure 6.7: A view of the Newton’s Cradle World Showing the Window

 [image: image83.jpg]

Figure 6.8: Another view of the Newton’s Cradle World

 Pendulum

The pendulum world illustrates, as its names suggests, a pendulum swinging. It was thought that a nice way of showing a pendulum would be as a pendulum clock in a room.

This world is therefore similar to the Newton’s Cradle world. Though, for aesthetic reasons, the Newton’s Cradle world required more modern objects and this one required older fashioned ones. All the objects were downloaded from the Internet. However, the clock with the pendulum needed some modification, since the pendulum needed to function as a different group to the rest of the object and needed to rotate from a point, in order to be able to be controlled by Simulink. This modification was modelled using MilkShape3D.

Figure 6.9, Figure 6.10 and Figure 6.11 illustrate different views of the pendulum world.

[image: image84.jpg]

Figure 6.9: A View of the Pendulum World Showing the Pendulum Clock

 [image: image85.jpg]

Figure 6.10: Another View of the Pendulum World

[image: image86.jpg]

Figure 6.11: A View of the Pendulum World Showing the Surrounding Objects

6.3. Summary

The five created worlds illustrate the control models developed in Simulink. These were a bouncing ball world, a radar world, an F14 world, a Newton’s cradle world and a pendulum world. The worlds are an important part of the system since they should be visually appealing to a user. Special care was therefore taken to make them fit to the control system, as well as being attractive to look at.

VRML97 was used to develop these worlds since it was free, easy to learn, and could be displayed in web-browsers such as Internet Explorer using the Blaxxun3D applet without requiring the download and installation of a plug-in, and was already the language of choice of the Mathworks’ VR-Toolbox. The large variety of objects freely available for download on the Internet reinforced this decision.

Software used to create more realistic and appealing objects included 3DExploration, which was used to convert the objects downloaded to the VRML97 file format. MilkShape3D and Blender were used to develop some objects and to modify others. Blaxxun3D was used as a viewer because it was plug-in-less. It was one of the aims of the project that the developed web page should not require large downloads.

Since the software packages required to design three-dimensional objects are expensive and have a step learning curve, the majority of models were downloaded off the Internet. A large amount of time was spent searching for and preparing object models with the desired properties. For instance, the final worlds’ file sizes could not be too large otherwise they would be too slow to open.

To sum up, the worlds were developed using VRML97. Other software was used to create and modify some of the objects downloaded from the Internet. The main goal of these worlds was to create appealing three-dimensional illustrations for the control systems developed in Simulink.

7. INTEGRATION AND TESTING

7.1. Integration

[image: image87.png]€] http://217.39.13.191 internalfadp1 1/

Control System Models

Listed below are the five control system models used as examples of the system in operation:

Bouncing Ball
Bouncing Ball Model

Newton's Cradle
Newtan's Cradle Model

F14 Control Simulation
F14 Contral Simulation Model

Radar Tracking
Radar Tracking Model

Pendulum
Clock Pendulum Madel

GDP11: Virtual 3D Control Systems WWW Dernonstrator based on Matiab

2001/2002

Figure 7.1: Main System Index Page

[image: image88.png]Links

Gtk v+ > - @ [0 | Qearch [Gravortes @iviecis (3 | B+ S il - 2 @
ddress [) hitp://217.39.13.11 fnternalfadp1 1 feradlefindes. bl =] P
Newton's Cradle]
Shown is the Newton's cradle YRML world. The Newton's cradle within the world is controlled by a
Simulink model. The model controls the individual spheres movement and models the effects of
collisions between them. The collisions modelled are not physical ideal, therefore in a collision 100%
of the energy is not usually transferred. The air resistance damps the system producing a loss in
each swinging sphere proportional to its velocity. The mass of each sphere can be altered (the 1st
sphere is the left hand one). Thetal through to Thetas are the initial angular positions of each
sphere in radians. The effects of releasing different number of spheres can be simulated by changing
the Theta values.
Forward
Left Right
Backward
within the world shown above two methods of navigation are possible. You can either click on the
applet and drag the mouse to the desired direction, or make use of the navigation buttons, placed
below the applet window.
The same effect can be achieved by pressing the cursor keys while the applet has focus., (click on
the applet to give it focus)
GDP11: Virtual 3D Control Systerms WWW Demonstrator based on Matlab
2001/2002
- |
& I ¥ v

Figure 7.2: Client browser window for the Newton's Cradle Model (Internet Explorer 6.0)

[image: image89.png]Master
Server

Matlab Client Browser Client

Matlab Interface Blaxxun Applet

3D World

Figure 7.3: Entire System

The Simulink wrapper calls Java methods in the MatlabConnector. This uses the CBServer to communicate with the AppletConnector Java applet, which integrates with the Blaxxun VRML display applet to display the VRML world.

In each model, lines of code needed to be added to the datasource and datasink to interface them to their appropriate worlds. In the datasource, this is a straightforward inclusion of a line of code for each input factor going into the model. The datasink also requires simple addition of a line of code for each input factor going into the model. The datasink also requires the code to take the output data from the model and convert it to a suitable state to be sent by the Java to the client. The extent of the interfacing required and the problems involved are stated below for each model.

When integrating models to 3D worlds the Java implementation is invisible, since the “umbrella” of the interface hides it. Similarly, the server and clients could be integrated without having to worry about the particularities of worlds or models. See Figure 7.3.

The web pages resulting from the integration of all subsystems are shown in Figure 7.1 and Figure 7.2. They show the working system from a client’s perspective.

Bouncing ball model

The model simulates the ball as the centre point moving around the three dimensional space. The ball would protrude half way through a wall or the ground before bouncing. To model the ball bouncing at the correct places the ground in the world was set at "–1" in the vertical axis to compensate for the radius of the ball and the walls were modelled as a box of side length nine but drawn in VRML as a box of side length 10. Only two vectors were required from the output of the model. These were for the shadow and ball translations.

Radar tracking demonstration

The Radar tracking demonstration model was a poor model to choose for integration to the system. Although there were plenty of variables in the model to experiment with, all those relating to the actual tracking system were used within the m-file aero_extkalman.m. These were poorly documented but more importantly unmanipulatable by the datasource and datasink.

The plane moves quickly across the landscape in the VRML world. A stationary view is useless as the plane is lost within seconds. It was therefore necessary to create a defined camera object in VRML that could be controlled by Matlab via the datasource/datasink. The model therefore controls the camera, plane and ghost plane. The camera coordinates are simply a modified version of the plane coordinates so that the plane remains in view at all times. From the model outputs, three vectors are created for the translations of the plane, ghost plane and camera. The speed of the plane requires a large world and even then, the plane will still move outside of the world given a long enough simulation.

F14 Flight control

The F14 model demonstrated similar interfacing problems to the Radar tracking demonstration. The plane would quickly move outside of the world requiring a large world and a trailing camera. The position of the F14 was reduced within the datasink effectively slowing its velocity within the VRML world. The possibility of using a spherical or cylindrical world and rotating the axes accordingly was considered for the F14 and the Radar models. However these worlds would also have to be big enough so that one would not notice that the objects placed in the world were curved.

The model employed many variables that were defined in an m-file. It could be converted so that these variables were implemented within Simulink, as was the case for the gains in the controller. The model was not well documented, making it difficult to figure out what particular variables did.

From the output of the model three vectors were required, these were: the F14 and camera positions and the pitch of the F14. When creating the vectors in the datasink slight adjustments to the vector components ensured that the plane flew and pitched in the right directions within the VRML world. The user controller gains are quite delicate, a small change can cause the plane to crash. Crashing is not modelled so the F14 ‘flies’ through the ground as though it is not there.

Pendulum

The pendulum model outputs the angular difference from the rest position of the pendulum. The output of the model is used to form the two vectors for the rotation of the pendulum and the length of the pendulum.

Newton’s cradle

The Newton’s cradle model is not very robust. Originally, the sample time of the model was set at 0.0005secs in order for the model to detect collisions. With respect to the model, a collision occurs when two adjacent spheres angular positions are within a certain value of each other. This inequality is needed rather than a comparison, because in a sampled system two spheres will not have the same position at any sample time. This is illustrated in Figure 7.4. When the point at which the spheres paths cross is magnified it can be seen that at their closest the difference is still 0.006. The inequality to detect a collision needs to be greater than this difference to successfully detect a collision. If the sample time is decreased, less samples per second, then the difference in sample values at the collision point is likely to increase. Therefore, when the sample time is decreased, the range of the inequality needs to be increased.

[image: image90.png]Spheret

15
| 1
0s =
e — |
a5 1
4 . \ N . ,
0 1 2 3 4 5 B
Sphere2
15
| 1
0s 1
o J
a5 1
4 . \ \ . ,
0 1 2 3 4 5 B
Sphered
- 1
= 05 1
t 0
§
805 4
s ,
0 1 2 3 4 5 B
Sphered
1
0s 1
o J
a5 1
| bl rentons crade* | 3 Cidosuments . | Bl scope ([rigurero.2 | Binewtons_crad.. | 45 152, o

[image: image91.png]Spheret

01

005

005

1

178 176 1785 177 1775 178 1785 173 1795
Sphere2

a L L L L L
0 1 2 3 4 5 6

Sphere3

displacement angleffad)

a L L L L L
0 1 2 3 4 5 6

Sphered

| bl rentons crade* | 3 cidocunents [rigureno.z | Binewtons crad.. | % 154, Gon

[image: image92.png]Spheret
00175 3

0m7 4
00185 4
0016 4
00155 4

0018 . . i . . P
1765 1765 1765 1765 1765 1765
Sphere2

a L L L L L

[1 2 3 1 5 [
Sphere3

displacement angleffad)

a L L L L L

[1 2 3 1 5 [
Sphered

| bl rentons crade* | 3 Cidosuments . | Bl scope ([rigurere.s | Binewtons crad.. | 45 155, Gori

Figure 7.4 Graphs illustrating differences in sample values

Depending on the speed of the PC that the simulation is running on, the simulation may not be able to keep ahead of real time when the sample time is set to 0.0005secs. This was the case for the PC’s used for testing the system. A more suitable sample time was 0.005secs. For the model to continue working with this sample time the inequality range needed to be increased. However, problems in the simulation still occur because of the reduced sample time. These can be resolved using a greater sampling time and therefore faster computer.

The output from the model is used to form the five vectors for the rotation of each sphere.

7.2. Testing the Simulation Timing and Execution

Introduction

To test the timing and execution of the control system models running in Simulink, one model was chosen to be examined under different test conditions. The Newton’s Cradle model was deemed the most suitable for this purpose, since it was quite computationally expensive but reasonable simple, so in a test scenario the integrity of the model would not enter the equation. The model would be tested by setting varying sample rates in the Simulink environment, and then observing the execution time for each packet of data. If the time to calculate the data for a packet is longer that the packet interval set to one second for this test, then the simulation would be delayed and would need to catch up. If packets were continuously delayed, then the simulation would run slow, and the test would be deemed a failure.

The Test

The sample times chosen needed to be integer multiples of the frame rate, i.e. the number of samples sent as animation frames per second, so the values used were 40, 100 and 200 samples/sec. The packet interval was set to 1000ms, except where stated otherwise. The test was run on a 650MHz PC with 320Mb RAM, and with all extraneous programs shut down.

40 samples/sec

This test ran well, with an average execution time of 900ms, 90% of available time. No packets were delayed, and the maximum timing error was 8ms.

100 samples/sec

This test also ran well, and for some unknown reason the average execution time had dropped to 500ms, 50% of available time. Again, no packets were delayed, and the maximum timing error was 9ms.

200 samples/sec

This test, however, did not run as well. The average execution time was only 600ms (60% of available time) but for three packets in ten, it was between 1200ms and 1400ms, causing these packets to be delayed. Changing the packet interval to 2 seconds, however, eliminated this problem, with no packets being delayed.

Evaluation of Test

It can be seen from the test data that whether or not a simulation will run smoothly is dependent on the processing capabilities of the host PC. Increasing the sample time gives the computer more work to do in terms of the amount of data processed and calculated, so therefore a higher specified machine would be able to handle increasingly complex models at higher sample rates.

There is also a possibility that increasing the frame rate sent to the client may also impact the quality of the simulation, due to the additional load on the Java interface, but this is difficult to test for on a conventional PC.

7.3. Java Client/Server System Testing

Purpose XE “Purpose”

 XE “Introduction”
The purpose of this test plan is to test the Java Client/Server system XE “SEG 12” to ensure that is meets the specification requirements.

Entry Criteria

Before this test plan can commence, the applet client has to meet certain criteria XE “criteria” . This ensures that functionality has been fully implemented before the testing XE “testing” commences.

The JCSupplier must load without error on the server.

The MatlabConnector must link into Matlab without errors.

The applets must load the VRML world applet and AppletConnector applet without error on the system’s web page.

Primary Test Environment

Table 7.1: Test Environment

	Test Matlab Host System
	Microsoft Windows 2000, Service Pack 2

750 MHz AMD Athlon Processor with 384 MB RAM

512 kbps ADSL Internet Connection

	Test Server
	Linux Mandrake 8.2

Celeron 400MHz with 64Mb RAM

512 kbps ADSL Internet Connection

	Web Browsers
	Microsoft Internet Explorer 6.0.2600.0000

Microsoft Internet Explorer 5.00.2614.3500IS

Microsoft Internet Explorer 4.72

	Java Runtime Environments
	Microsoft Virtual Machine for Windows Operating Systems, Build 3805

Java HotSpot™ Client VM, Build 1.3.1_01, mixed mode

	Java Compiler
	Java™ 2 SDK, Standard Edition, Build 1.3.1_01a

Test Scripts

The following is a table of test scripts used to test the various features of the Java Client/Server system. Each script has an ID number, composed of a letter and a number; the letter indicates which section the script belongs. Each script has a description and pass criteria, if the sub-system component achieves this pass criteria, then it passes that test XE “test passes” .

Server Networking

Table 7.2: Server Networking Test Scripts

	Test ID
	Test Description
	Pass Criteria

	S-1
	Matlab connection
	Server accepts Matlab connection

	S-2
	Client connection
	Server accepts Client connection

	S-3
	Multiple connections
	Server accepts 50 client connections

	S-4
	Many multiple connections
	Server accepts 3000 client connections

	S-5
	Thousands of multiple connections
	Server accepts 10000 client connections

	S-6
	Client disconnection recovery
	Server recovers from clients disconnecting

	S-7
	Client crash recovery
	Server recovers from clients crashing (unforeseen disconnection)

	S-8
	Matlab disconnection recovery
	Server recovers from Matlab disconnecting

	S-9
	Matlab crash recovery
	Server recovers from Matlab crashing (unforeseen disconnection)

Animation & Display

Table 7.3: Animation & Display Test Scripts

	Test ID
	Test Description
	Pass Criteria

	A-1
	VRML display
	The VRML applet displays a 3D world

	A-2
	Lighting
	Full 3D lighting illuminates the VRML applet’s 3D world

	A-3
	Moving
	The applet displays a moving object

	A-4
	Accuracy
	The object moves smoothly and accurately

GUI & Applet Input

Table 7.4: Applet Input & GUI Test Scripts

	Test ID
	Test Description
	Pass Criteria

	G-1
	Apply change button
	Changing a “Constant” value and pressing the “apply” results in the display redrawing with the new value.

	G-2
	Cancel button
	Changing a “Constant” value and pressing the “cancel” button results in the display redrawing to the old value.

	G-3
	Stop button
	Clicking the “Stop” button results in the animation stopping after a 3 second delay.

	G-4
	Restart button
	Clicking the “Restart” button results in the applet restarting the simulation from the

Memory Usage & Stability

Table 7.5: Stability & Memory Usage Test Scripts

	Test ID
	Test Description
	Pass Criteria

	M-1
	Server stability
	The server runs for 3 days without crashing.

	M-2
	Client applet stability
	The applet client runs for 3 hours without crashing.

	M-3
	VRML applet stability
	The VRML display applet runs for 3 hours without crashing.

	M-4
	Matlab stability
	Matlab runs for 3 hours without crashing.

	M-5
	Server memory handling
	The server’s memory usage has not increase significantly after 3 hours of continuous operation.

	M-6
	Client applet memory handling
	The applet client’s memory usage has not increase significantly after 3 hours of continuous operation.

	M-7
	VRML applet memory handling
	The VRML applet’s memory usage has not increase significantly after 3 hours of continuous operation.

	M-8
	Matlab memory handling
	Matlab’s memory usage has not increase significantly after 3 hours of continuous operation.

Test Results

Priorities

The following priorities have been used when recommending the importance of fixing some bugs before others in the test results table:

Table 7.6: Bug Fix Priorities

	Priority
	Meaning
	Fix Priority

	Critical
	System crashed, or major feature fails to work
	Fix Immediately

	High
	System at odds with documentation, or operation fails in some non-critical but irritating way
	Fix as soon as possible

	Medium
	Minor bugs that do not cause much real concern
	Fix these sometime

	Low
	Trivial problems that need not be fixed anytime soon
	Can still be distributed with bug

Test Results

The following table details the results of every test. If a test was not passed, an explanation is given.

Table 7.7: Test Results Table

	Test ID
	Pass/Fail
	Error Report
	Fix Priority

	S-1
	Pass
	
	

	S-2
	Pass
	
	

	S-3
	Pass
	
	

	S-4
	Pass
	
	

	S-5
	Fail
	The server fails to accept 10000 clients’ connections, since the underlying Windows 2000 operating system does not provide enough thread handles.
	Low

	S-6
	Pass
	
	

	S-7
	Pass
	
	

	S-8
	Pass
	
	

	S-9
	Fail
	A Matlab crash and a connected applet attempting to change a “Constant”, result in the server refusing subsequent Matlab connections.
	High

	A-1
	Pass
	
	

	A-2
	Pass
	
	

	A-3
	Pass
	
	

	A-4
	Pass
	
	

	G-1
	Pass
	
	

	G-2
	Pass
	
	

	G-3
	Pass
	
	

	G-4
	Pass
	
	

	M-1
	Pass
	
	

	M-2
	Pass
	
	

	M-3
	Pass
	
	

	M-4
	Fail
	When continually calculating a complex simulation, Matlab crashes within 5 minutes. The Matlab generated error report shows the Java VM as the cause of the crash. See M-4.
	High

	M-5
	Pass
	
	

	M-6
	Pass
	
	

	M-7
	Fail
	The VRML applet uses a great deal of memory, but frees almost all of it every few minutes.
	Low

	M-8
	Fail
	Matlab slowly uses more and more memory as a simulation progresses. This is due to the Matlab Java Virtual Machine not garbage collection unused Java objects. See M-8.
	Medium

Evaluation of Test

High and medium priority bugs S-9, M-4, and M-8 were fixed in the next version of the system. Bugs M-4 and M-8 were fixed by rewriting the Matlab m-file Java statements to always reuse objects, so that garbage collection is not needed. Bug S-9 was fixed by making the server World objects independent of Matlab instances. This fix introduces a security vulnerability: any Matlab client can, both maliciously and accidentally, hijack a running simulation from another Matlab client. A password system would be needed to ensure these kind of take-overs do not happen.

7.4. Performance/Load testing

A small Java applicant was created to imitate an applet Client connecting. This application was designed to open as many connections to the server as specified by the tester. The application was also created to test and record the speed of the connection establishment handshake procedure as well as the server slowdown as the number of connected clients increases. These tests were conducted using a 100 mbps LAN network, so that Internet latency and bandwidth limitation would not overly bias the test result.

Results from the load test indicate that the handshake for each new client completes in 10 milliseconds. This speed is independent of the server load. This is a useful feature to have, since the rate of connection remains linear, even with 6000 clients simultaneous vying for a server connection. The handshake protocol has O(n) (Wikipedia, 2002).

[image: image93.emf]Server Latency

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000 7000

Connecting clients

Latency (milliseconds)

Figure 7.5: Server Latency with Multiple Connecting Clients

The latency experienced by clients when multiple clients are connected is very small. With 10 connected clients, these receive the animation data on average 16 milliseconds after it is calculated. As hundreds of clients are simultaneous watching a simulation the latency increases to around 150 milliseconds. This is the “normal” amount of Internet latency that user have come to except. When 6000 clients connect simultaneously, the server load begins to reach its limits, but the average latency nevertheless only increase linearly. See Figure 7.5.

[image: image94.png]T

Figure 7.6: Server CPU load with 6000 connecting clients over five minutes.

The underlying Windows 2000 operation system cannot provide enough threads to Java to handle more than around 6000 client connection. The server architecture would need to be redesigned to utilise fewer threads, if simultaneous connection of over 6000 clients were ever required. See Figure 7.6.

7.5. Fail-over Testing

Upon clients terminating their connection, the server recovers to full speed within about 14 millisecond for each connection. Recovering from 6000 connected clients took almost one and a half minutes. This is average fail-over performance. It implies that the server must devote significant effort into freeing up the resources used by each client connection. Some optimisation of the algorithms handling client disconnection could lead to significantly better fail-over.

7.6. Usability testing

It was decided that the effort needed for detailed Human Computer Interaction usability testing was to be best utilised in improving other areas of the system at this stage. Usability testing would be most beneficial if done on an optimised system shortly before deploying it for public access.

7.7. Security testing

The architecture of the VRC system provides a good base for a potentially very secure system. The system does not use any kind of encryption or passwords. However, good development practices such as encapsulation and information hiding have resulted in a system which is resistant to cracking. For example, it survived denial-of-service attacks as simulated by during load testing. In addition, network addresses of machines hosting simulations are hidden by the server, which makes it very difficult for a malicious user to attack these directly.

The VRC system is not a critical system, so continual operation is not required. A future version could provide an option to encrypt sensitive simulations and to provide secure password protected web-page access to these. This would make the system resistant to “man-in-the-middle” attacks.

Attacks from trusted system and/or trusted people are a problem. These issues need to be further explored to provide the best protection. However, most systems are vulnerable to these kinds of attacks.

Since Java is type safe and memory safe, the VRC system is immune to buffer overrun attacks such as the ones used by the Nimba and Code Red viruses (Udell, Jon, 1999).

The exploration of further security issues is beyond the scope of this project.

7.8. Cross platform compatibility

The web-based client interface was tested using a variety of browsers in different operating environments. The test was clear and simple: if the browser displayed all the information in a clear way, and allowed full interaction within the model’s applet window, then the test was a success. The following table gives details of the evaluated clients:

Table 7.8: Cross Platform Compatibility

	Operating System
	Browser Software
	Test Result

	Microsoft Windows XP
	Microsoft Internet Explorer 6.0
	Passed

	
	Netscape 6.2
	Passed

	
	Opera 6
	Passed

	Microsoft Windows 2000
	Microsoft Internet Explorer 6.0
	Passed

	
	Microsoft Internet Explorer 5.0
	Passed

	
	Netscape 4.08
	Failed – Not standards compliant.

	Microsoft Windows 98
	Microsoft Internet Explorer 4.72
	Passed

	RedHat Linux 7
	Konqueror 2.1
	Failed – Not standards compliant.

	
	Netscape 4.72
	Passed – Incorrect layout due to not being standards compliant

8. EVALUATION

8.1. Comparison of Related Products

This section gives an overview and comparison of various commercial products and academic papers that present systems similar to the VRC.

Matlab Virtual Reality Toolbox 2.0

[image: image95.png]P ——— |

o - D Q| Qerch (rvonss Gveds 3| B >

e [1270, L1231 136515923 =

NI

& error inlextermalesceponfinvaidiocets | || [@ et

Figure 8.1: Virtual Reality Toolbox MagLev Example

The VR-Toolbox uses a system of specialised Simulink blocks to link VRML files to the Matlab/Simulink environment. These VRML files are displayed and animated in real time using the Blaxxun Contact (Blaxxun Interactive, 2002) VRML viewer web-browser plug-in. See Figure 8.1.

Blaxxun Contact requires a 5.47 MB download and installation. On top of this, the VRML files used for the models can be quite large as well, requiring further downloads. The VR-Toolbox includes a web server which hosts these VRML files. This server is proprietary and very difficult to use. Remotely viewing a simulation involves typing a long partially randomly generated URL into a web-browser with Blaxxun Contact. Both local and remote machines must run Windows, since Blaxxun Contact and the VR-Toolbox are only available for that operating system.

There is a direct connection between the Matlab VR-Toolbox and the viewing clients. Viewing the system with multiple remote clients requires the user to set the toolbox to a specific poorly documented “network” mode. This concurrent “network” mode requires a special version of the Toolkit which costs £1870.

Real-time user interaction is possible by including special “vrsource” Simulink blocks. Clients viewing the VRML world through Blaxxun Contact can therefore interact with a running simulation, though this requires considerable effort from the VRML programmer, since the interaction interface must be separately programmed in VRML for each new simulation.

Viewpoint

[image: image96.png]You are aboutto experience cutting edge web technology showsased in ths Ford Explorer. You can interactwith the Explore
Keypointfeatures or simply it back and enjoy our 30 tour presentation

Press abutton, and both the
accelerator and brake pedals
move forward and back a ful
three inches.

Ang optional seat memory.
feature fets you store several
setings.

Forfamiles with a variety of
arivers (and 3 vriety of
statures) what could be
better?

Srowe From o 2P oo

LEFTCLIOKS 0BG IGHTCUCK§ ORAG__ B0THCLICK§ DRAG.

Figure 8.2: Ford’s viewpoint media player web page

A company called “Viewpoint” (Viewpoint Corporation, 2002) creates 3D demo applications as marketing material for various companies’ WebPages (Ford Vehicles: Explorer 3D Views, 2002). These demos only allow integration of 3D models other multimedia content such as with Macromedia Flash files.

To achieve relatively quick downloads of 3D image even when showing complex 3D models, the Viewpoint system utilized a proprietary Wavelet (Joint Photographic Experts Group, 2002) image compression technology. However, while the 3D models are quite small, the actual Viewpoint player is a 3.2 MB download and needs to be installed and integrated with the user’s web-browser. A user might not trust Viewpoint enough to grant the installation program unlimited access to their computer; nor would a user be willing to wait the 15 minutes it takes to download the 3.2 MB application using a dial-up Internet connection.

While the 3D model has some interactive features, all these need to be pre-built. There is no real-time interaction between any Viewpoint clients.

See example of a Viewpoint demo in Figure 8.2.

LabView

[image: image97.png]

Figure 8.3: NI LabView Remote Panels

LabView (National Instruments Corporation LabView, 2002) is a test, measurement, control, and automation applicant development environment and programming language. The NI LabView Remote Panels add-on allows users to fully remote control LabView though a web browser. The Remote Panels application provides excellent and very easy to use remote control system. However, the remote control is limited to 50 simulations per user at a cost of £2860 for Remote Panels plus £3345 for LabView, giving a total cost of £6205. The product also requires a 200 MB installation, even for remote clients.

Remote Panels uses a technology similar to Windows Remote Desktop (Microsoft Corporation Remote Desktop, 2002). It provides a remote control system which allows a user to control the LabView application over a network connection, as if they were sitting at the computer actually running LabView. This approach generally requires the large amount of bandwidth only available on a local network. See Figure 8.3.

Comparison Chart

Table 8.1: Comparison of System Client

	
	GDP: VRC
	VR-Toolbox 2.0
	Viewpoint
	LabView

	Download size
	141 KB + VRML
	5470 KB + VRML
	3200 KB + Wavelet compressed file
	200 MB

	Installation necessary
	No
	Yes
	Yes
	Yes

	Simultaneous users
	Thousands
	Unspecified
	Thousands
	50

	Bandwidth requirement
	Modem
	LAN
	Modem
	LAN

	Platform independent
	Yes (Java)
	No (Windows only)
	Somewhat (Windows + Macintosh)
	Somewhat (Windows + Linux)

	Quality of image
	Medium Quality
	High Quality
	Very High Quality
	N/A

	Accuracy of simulation
	Good
	Good
	N/A
	Very Good

	Price
	Free
	£1870
	Free
	£3345

The produced VRC system requires sacrifices some visual image quality for complete platform independence. Other systems only achieve their high level of visual quality by utilising a computer’s hardware 3D acceleration. This 3D hardware is different for each platform. Therefore, all other systems must produce a new player for each platform they wish to support. The VRC system runs on any Java platform without the need for any modification. See Appendix D.

Paper: Development of the Internet based control experiment (Yeung, Kin and Huang, Jie, 2001)

This paper describes a remote Internet based control system. The developed system uses a Linux server running the Apache web server to host CGI programs. These CGI programs send control instructions to a server running LabView which controls a DC motor. The only user feedback is provided using a video camera which provides streaming video of the motor to remote viewers.

This system has a number of shortcomings. The video resolution is 352 x 288 pixels, which, opposite to what is stated in the paper, is very low quality. That resolution is roughly 1/3 the pixel size of a PAL TV image. The lowest quality camera found, the Logitech QuickCamExpress (Logitech Cameras, 2002) costs around £30 and delivers resolutions of up to 640 x 480 pixels.

The paper highlights its system as Internet based and suitable for long-distance education. It does not however address the limited bandwidth of Internet users, or the non-real-time nature of the using CGI to process commands. Their testing was conducted using a 100 Mbps Local Area Network connection. CGI requires a new server thread and a new network connection to be instantiated for each action taken. This overhead causes some delay from a user pressing a button on a web page, to the result reaching the experiment, especially with multiple simultaneous users. A better system would have used a Java Servlet or JSP based web application server system to control the simulation, instead of CGI.

Paper: A Virtual Laboratory Experience Based On A Double Tank Apparatus (Irawan, Remy, 2001)

This paper describes an interesting system which links to a physical double-tank experiment. It uses a combination of Java, CGI/Perl, Matlab, Excel, C++, DAQview and HTML to allow users to use a web page to conduct experiments in a similar way to the “Development of the Internet based control experiment” paper describes. However, unlike that paper’s system, no graphical user feedback is provided. The paper focuses on the educational value and does not address the system architecture.

Paper: A Web-Based Laboratory on Control of a Two-Degree-of-Freedom Helicopter (Zhang, Jing and Chen, Jianping, 2001)
This paper’s web-based control laboratory is again very similar to the “Development of the Internet based control experiment” paper’s one. It uses a web server linked to a local PC running LabView as well as a video camera and microphone to provide feedback. The author’s system uses a T1 Internet connection.

The paper gives a justification for using TCP based communication instead of CGI. This comparison does not make sense, since CGI is an interface linking web servers to application programs and TCP is an Internet communications protocol. CGI programs on web servers actually make use of TCP. The paper implies the use of a proprietary TCP based socket communications protocol. It would therefore have made sense to justify why the author’s did not use a connection based TCP protocol such as RMI, SOAP, or CORBA, and chose to implement their own protocol instead.

Paper: Virtual Control Systems Laboratory (Navaratna, Channa, 2001)

This paper outlines a 3-Link Inverted Pendulum and Wedge simulation Internet based control system. It is implemented as an applet without any server interaction. Out of all the control simulation papers reviewed, this one’s system was the only truly feasible Internet based simulation for a user connecting with a standard 56 kbps modem.

8.2. Size of download

A substantial effort was made to keep the download size for clients to a minimum, so that users with dial-up Internet connections could experience the system without having to wait for an unreasonably large download to complete. The estimated download times of various worlds for broadband (512 kbps) and dial-up (56 kbps) Internet users are as follows:

Table 8.2: Download Sizes and Times

	World Name
	Applets
	VRML
	Total
	Dial-up Download Time
	Broadband Download Time

	Bouncing Ball
	141 KB
	48 KB
	189 KB
	27 seconds
	2 seconds

	Newton’s Cradle
	141 KB
	255 KB
	396 KB
	56 seconds
	6 seconds

	F14 Control Simulation
	141 KB
	563 KB
	704 KB
	100 seconds
	11 seconds

	Radar Tracking
	141 KB
	261 KB
	402 KB
	57 seconds
	6 seconds

	Pendulum
	141 KB
	530 KB
	671 KB
	95 seconds
	10 seconds

8.3. Evaluation

A number of objectives were set out at the beginning of the project. This section evaluates the degree to these goals were achieved.

Platform independence: The use of a three-tier system and the Java technology ensures one of the highest degrees of software and hardware platform independence available today.

Privacy & Security: The system was not designed to be secure. Nevertheless, the objective of isolating Matlab and Java applet clients from each other through the server was achieved.

Scalability & Load Balancing: The system continued to run with a load of 3000 simultaneously connected clients. This demonstrates its excellent scalability.

Analysability & Testability: The server does not as yet analyse usage or bandwidth statistics. It is however relatively simple to create client applicants to analyse and test the system.

Maintenance & Flexibility: The speed with which bugs found in testing could be corrected points to good maintainability. The use of encapsulation in objected-oriented programming ensures the system is flexible. It is however not as flexible as a fully scriptable server system would have been. The timeframe of the project did not allow for the creation of such an extraordinarily flexible system.

Stability & Recoverability: The system is resistant to clients crashing. Endurance tests resulted in good overall stability after fixing a number of bugs. The server does not recover from heavy load as quickly as it could, though the recovery occurs quickly enough in normal use. Recoverability could however present a problem if the system were subjected to a denial-of-service attack.

Small size & quick download: With an average download time of just over a minute for a dial-up user and seven seconds for a broadband user, the system achieves its goal of being accessible to every Internet user.

Ease of use: Although usability tests were not conducted, the web pages certainly appear to be intuitive. The simple set-up instructions further justify this goal having been achieved. See Appendix E.

Performance: The system exhibits adequate performance on an up-to-date computer. Performance problems only occur when attempting to view the 3D Java applet on the computer that is also running the Matlab simulation.

Accuracy: The control simulation is as accurate as possible with today’s technology. However, a three-second buffering time was introduced to compensate for the variable Internet conditions, as well as timing inconsistencies in Matlab simulations.

9. CONCLUSIONS AND FUTURE WORK

9.1. Conclusion

The project aimed to develop a world-wide-web based three-dimensional control system demonstrator. The development of the system necessitated the integration of Matlab with an HTML web page. Several different programming languages were used to achieve this. These included: Simulink to develop the control demonstrations, Java to develop the middleware and VRML to produce three-dimensional illustrations of the control systems.

Several issues were addressed such as flexibility, controllability and user-friendliness in designing the system’s architecture. The produced system is cross-platform, it uses a three-tier architecture to achieve better scalability than any other comparable system and it does not require clients to install applications or plug-ins, making it useful in a variety of areas. An effort was made to produce aesthetically pleasing and appealing three-dimensional illustrations of the control models. When comparing the produced system to other existing systems, such as Matlab VR-Toolbox, Viewpoint and LabView, this system has the advantages of being cross-platform, scaleable, very accessible requiring no installation, with acceptable performance when using a slow Internet connection, however this was achieved at the cost of some visual quality.

The system can be used by anyone, even if they are of a non-technical background, because of a simple, accessible interface which encourages experimentation. The diverse selection of examples caters for science and engineering students with a broad range of skill levels. The designed web page includes five control systems demonstrations: two simple models, a bouncing ball and a pendulum, and more complicated ones, a Newton’s cradle, a F14, and a radar. Users can interact with these models by changing parameters, for example: the elasticity of the ball in the bouncing ball world, the resistance of the air in the Newton’s cradle world and the initial velocity of the plane in the radar world.

Potential application areas include, virtual teaching laboratories for science and engineering students and/or advertisement on the University web page for prospective students. As the system can be extended to demonstrate further control systems, it could also be used for other applications, such as worldwide conferences.

In summary, it can be concluded that the project’s objectives were successfully accomplished, since a user friendly three-dimensional control demonstrator, of similar quality to other applications, was produced that can be used by a variety of clients in numerous applications.

9.2. Future Work

Server

Integrating the CBServer with a web application server running on the same server host would provide additional value by enabling the display of real-time status information. A potential client could, for example, see a particular 3D world’s number of connected clients, the simulation accuracy, latency and buffering times and/or the controlling Matlab host that is running each particular simulation.

A substantial effort in investigating security issues and potential attacks on the server could reduce the risk of deploying the server in a live Internet environment with many potentially malicious users. The networking socket connection could, for example, be encrypted to prevent anyone from intercepting simulation data being transferred over the Internet.

Eliminating the cyclic package dependency of the “vrc.structure.World” class would make the VRC easier to maintain, since all VRC package relationships would then be intransitive.

Applet Client

Extending the client/server handshake so that the client tests the latency of its connection to the server would allow the client to set its own buffer length dynamically. This would allow clients with slower Internet connections to see a very smooth animation, while those with high-speed access could see the effects of changed parameters almost immediately.

Interpolating between frames of animation could increase the frame-rate at no extra cost of network bandwidth and thereby provide a smoother simulation for users of the system.

Matlab Client

An automated installation program would make the system a lot easier to use. Even non-technical users could then set the system up.

Matlab

General-purpose datasink and datasource files could be created. These would not need to be configured directly when interfacing the models to the worlds. Instead, separate interfacing m-files would be produced.

Developing a new wrapper to link Matlab control systems directly to Java and avoid the overheads of Simulink would allow for control applications that were developed using only Matlab code and not reliant on Simulink to be used by the produced system.

Simulink

The datasource and datasink could be extended to allow the user greater control over simulation parameters. Controls allowing the user to start, stop and pause the simulation on demand would reduce the strain on the CPU of a computer running continual simulation. Also if the model crashed due to unsuitable user input the user would be able to stop and restart the Simulation themselves. Allowing the user to change the sample time and solver options for the model would give the user greater flexibility and may be essential for more complex models.

Links in the WebPages could allow the user to view and download the Simulink models. This could be for using on the user’s own computer, or for adaptation and eventual reintegration into the system.

Incorporating a function, which allows the client to upload Simulink models, may be appropriate. This would expand the model library giving a greater variety of demonstratable systems.

The datasource’s and datasink’s functionality could be increased to control models written as m-files as well as Simulink Block diagrams.

3D Worlds

Although the file size of the five worlds created is reasonably small, they might cause a user to wait for a short time as they download. One way around this is to provide cut down versions of the worlds as well as the current high quality versions. This would also help users with slow computers, as the worlds would run faster, although they would look visually inferior. Users with fast Internet connections and newer computers would continue using the current models. The low quality versions could be created by running the current worlds through a polygon reduction program such as 3DReducer mentioned in Chapter 6.

A three-dimensional object library could be organised that would make the authoring of new worlds much easier by allowing the reuse of created or downloaded models. Often, models were altered so that they could be used under certain conditions; the object library could store different versions of an object depending on the world being developed. An example is the F14 aircraft, which in one case was required with its landing gear down and in another case it was flying. The object library might also help users to create their own worlds for their own control systems.

REFERENCES AND BIBLIOGRAPHY

3- and n-Tier Architectures, 2002, http://www.corba.ch/e/3tier.html
3DCafe website, 2002, http://www.3dcafe.com
3DLinks website, 2002, http://www.3dlinks.com
3DReducer website, 2002, http://www.3dreducer.com/
A Comparison of PHP and Cold Fusion, 2002 http://php.weblogs.com/php_vs_cold_fusion
Alias Wavefront website, 2002, http://www.aliaswavefront.com
Apache.org Software Foundation, XML Project, Xerces Java Parser 1.4.4, 2002, http://xml.apache.org/xerces-j/index.html
Apache.org XML Project, 2002, http://xml.apache.org/
Application Program Interface Reference, Version 6, Matlab help document, apiref.pdf.
Beier, K.P., Virtual Reality: A Short Introduction, September 2001, http://www-vrl.umich.edu/intro/
Bengtsson, Bosch, Haemo Dialysis Software Architecture Design Experiences, 1999, http://citeseer.nj.nec.com/context/76542/0
Blaxxun Interactive, 2002, http://www.blaxxun.com
Blender website, 2002, http://www.blender3d.com/
Blundon, Willam, Sun makes big move, http://www.javaworld.com/javaworld/jw-11-1997/jw-11-blundon.html
chUmbaLum sOft website, 2002, http://www.swissquake.ch/chumbalum-soft/
COCS 120 Introduction to Cyberspace, Learning Module VI Survey of Programming Languages that are associated with the web, December 2000, http://www.frostburg.edu/dept/cosc/htracy/cosc120/MODULES120/NetPL/PL_Net.htm
Corel website, 2002, http://www.corel.com
Department of Mathematics - University of Utah, 2002, www.math.utah.edu/lab/ms/matlab/matlab.html
Dictionary.com, 2002, http://www.dictionary.com
Discreet website, 2002, http://www.discreet.com
DiStefano, J. J., III, Stubberud, A. R., Williams, I. J., Theory and Problems of Feedback Control Systems, Schaum’s outline series.
Distinct® ONC RPC/XDR Toolkit for Java Version 4.0, 2002, http://www.onc-rpc-xdr.com/products/rpc/rpc-java-xml.asp
Dorf, R. C., Bishop, R. H., Modern Control Systems, 8th Edition, 1998.
External Interfaces, Version 6, Matlab help document, apiext.pdf.
Ford Vehicles: Explorer 3D Views, 2002, http://www.fordvehicles.com/suvs/explorer/3Dviews/index.asp?flashok=true
Ford, S., Wells, D., Wells, N., Web Programming Languages, January 1997, http://www.objs.com/survey/lang.htm
Fowler, Martin, UML Distilled 2nd Edition, Addison Wesley 2000
Half-Life website, 2002, http://half-life.sierra.com/
Heller, Martin, Introduction to VRML, February 2001, http://www.mheller.com/vrml.htm
IBM AlphaWorks: Class Broker for Java, 2002, http://www.alphaworks.ibm.com/tech/jcbroker
IBM: A UML workbook, 2002, http://www-106.ibm.com/developerworks/java/library/j-jmod0508/
Informal Language Comparison Chart(s), 2002, http://www.smallscript.net
Internet2 Middleware Initiative, 2002, http://middleware.internet2.edu/
Irawan, Remy, A Virtual Laboratory Experience Based On A Double Tank Apparatus, 2001
JavaParty, Universität Karlsruhe (Technische Hochschule), Fakultät der Informatik, 2002, http://wwwipd.ira.uka.de/JavaParty/
Joint Photographic Experts Group, 2002, http://www.jpeg.org/JPEG2000.htm
Kruchten, Philippe B, The 4+1 View Model of Architecture, IEEE Software 12, 6 November 1995, http://www.rational.com/products/whitepapers/350.jsp
Lee, Kent, IBM Class Broker for Java Installation and User's Guide, 1999
Librenix Comparison: Microsoft C# vs. Sun Java, 2002, http://librenix.com/?inode=1498
Lightwave website, 2002, http://www.lightwave6.com
Logitech Cameras, 2002, http://www.logitech.com/cf/products/cameras.cfm
Marquée XML-RPC: An XML-RPC library for Java, 2002, http://xmlrpc.sourceforge.net/
Mathworks website, 2002, http://www.mathworks.com
Matlab Function Reference, Volumes 1-3, refbook.pdf, refbook2.pdf, refbook3.pdf.
Matlab Online Documentation, Mathworks Inc, 2001, http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.shtml
Mayers, Chris, ANSAwise – CORBA Concurrency and Transaction, http://www.ansa.co.uk/ANSATech/96/Training/154002.pdf
McCluskey, Glen, Using Java Reflection, 1998, http://developer.java.sun.com/developer/technicalArticles/ALT/Reflection/
McConnell, Steve, Rapid Development, Microsoft Press 1996
Microsoft Corporation Remote Desktop, 2002, http://www.microsoft.com/windowsxp/remotedesktop/
Microsoft RMI upgrade/patch, 2002, ftp://ftp.microsoft.com/developr/MSDN/UnSup-ed/rmi.zip
NASA: Checkout & Launch Control System, 2002, ERP: Issue 161 – Multithreaded Safety in RTPS Software, http://clcs.ksc.nasa.gov/sei/erp/mtsafe1.ppt
National Instruments Corporation LabView, 2002, http://www.ni.com/labview
Navaratna, Channa, Virtual Control Systems Laboratory, 2001, Department of Mathematics & Statistics, Texas Tech University
Netbula LLC, JavaRPC, 2002, http://netbula.com/javarpc/
Neumann, Michael, A comparison between BETA, C++, Eiffel, Java, Object Pascal, Ruby und Smalltalk, http://www.s‑direktnet.de/homepages/neumann/lang_cmp.en.htm
Pressman, Roger, Software Engineering: A Practitioner’s Approach 5th Edition, McGraw-Hill 1994
QSAD Utilities: Enabling RMI Services, 2002, http://www.bu.edu/smec/qsad/utilities/java.html
Right Hemisphere website, 2002, http://www.righthemisphere.com
Rogers, E., Basic Control Systems Analysis and Design, Course Notes, University of Southampton.
Rogers, E., Signal Analysis, Course Notes, University of Southampton.
S. J. Cox, Matlab Reference Book, University of Southampton, 1999
SGI-Cray Origin2000 Supercomputer Repository, 2002, http://scv.bu.edu/SCV/Origin2000/matlab/MATLABexample.shtml
Shout3D website, 2002, http://www.shout3d.com
Sun: The Source for Java Technology, 2002, http://java.sun.com
TechWeb Encyclopaedia: Business Technology Network, 2002, http://www.techweb.com
Bruin de H, The 4+1 View Model of Architecture, 1998, http://www.cs.vu.nl/~hansdb/state/node12.html
The Annotated VRML 97 Reference, 1999
The EcoAccess Web Application Framework, 2002, http://www.linux.ncsu.edu/lug/lectures/ecoaccess/
Turbosquid website, 2002, http://www.turbosquid.com
Udell, Jon, Computerworld Inc, Java Takes Control, July 1999, http://www.computerworld.com/cwi/story/0,1199,NAV47-68-85-1552_STO36209,00.html
Viewpoint Corporation, 2002, http://metastream.com/
Vuorimaa, Petri, Telecommunications Software and Multimedia Laboratory (TML), Helsinki University of Technology), 2001, http://www.tml.hut.fi/Opinnot/Tik-111.350/2001/slides/Software/Software.pdf
Web Review: Browser Guide, 2002, http://www.webreview.com/browsers/browser_faq.shtml
Web3D Consortium website, 2002, http://www.web3d.org
Webopedia: Online Dictionary for Computer and Internet Terms, 2002, http://www.webopedia.com
Wikipedia: the free encyclopaedia, Big O notation, 2002, http://www.wikipedia.com/wiki/Big_O
World Wide Web Consortium website, 2002, http://www.w3.org/
Yeung, Kin and Huang, Jie, Development of the Internet based control experiment, 2001, Department of Automation and Computer-Aided Engineering, The Chinese University of Hung Kong SAR, kyeung@acae.cuhk.edu.hk, jhuang@acae.cuhk.edu.hk
Zhang, Jing, Chen, Jianping, Ko, C. C., Chen, Ben M., Ge, S. S., A Web-Based Laboratory on Control of a Two-Degree-of-Freedom Helicopter, Department of Electrical and Computer Engineering, National University of Singapore, Proceedings of the 40th IEEE, Conference on Decision and Control, Orlando, Florida USA, December 2001
APPENDIX A: Time Plan

The production of this report was spread over eight months, for this reason the work plan on the next pages was drawn up.

[image: image98.jpg]ZOVSIVGL UL | ZOVPOVEZ UOW SAep p1 uopeyuasald aledaid |15 |
ZUPQY9Z U4 ZUVPOVEZ BnL sAep puIg pue Jud F
TOPOVZZ UOW | ZOVPOVS0 UOW SABP ST 1224403 pue peal J0oid &f
ZOiPOi80 UOW | ZOVEQVEZ NuL sAep gE uyodal yeiq ﬁ
TIVELVEZ YL ZOVELVE L 3L sAep 2 paaifie ainjonis poday H
20/50/91 YL Z0/E0/6L anL SAep Lg yoday aya1dwon o ap
TIENVIZ UL ZIVEOVE L PaA SABP 59 sBNQ 14 pue wajsAs jsa) M
ZOEWVZLBNL ZOVEQVED Pan shep s SjUsUOCWOD BABP JO 1S3 [BUld E
ZOVEVSO 8NL ZOIZIVEL Pap, SAep G Janias @) | ev |
TOIZOIZL ANL ZO/LONGL PAML SABP 0L a0epia)u @) | zb |
WIS ANL LUVZWpL U sdepg UawaUYa1 40ja3UU0D Jaiddy YNHA | i |
e WWZWELNUL | LOiZWPD L shep g 1003UU0D Ja(ddy TNHA | ot |
I LOVZ WED UOW LIV | BT Pap, SAep & 104Ju02 Jajddy B
LVZ 0L UOW | LOFZ 0L Ul Shep 0 BAB[UJAN PRJOSULI0D S0BLISI BABT/TRII ec |
MWLMz ANL LLWEZ MY shep e SSBJD 40}03UL0D Gl [|
LV LWZZ UL | LOFLWEL WO shep 13A438 WY .HJ
IJ WVLWSL MY LFLWEL N sAep b a0epia)u afessaw jajddy Wy M
] LOVLWZL U0 | LD W LE PaA, SABP 6 a0ei0) afEssaw Gejew Wy e
] LVOWOE aNL | LOVO W L0 UoW shep ZZ BUNIOABNIT AT YoIeasay M
ZO/E0/ZL ANL LO/OL/LO UOW SARp Z6 wiawdojanap eaef [| z€ |
ez anL ZOrLvs L anl sdep |g Juis elep auyal pue 158 h
TOOLOVP L UOW ZOVLOMZ0 UOW SABP GG {UIS BJ2P PAPPaGWa WAYT JO UoissaA Buuonauny | oc |
LOVZHOL UOW | LOZWOL Yo Shep 0 JUIS BIEP [BIIUI 0} PaYUI [BPoW adAj0jold | 62 |
ZOMVZ0UOW | LVZWE0 UL shep 2 HUIS BIEP PIPPAGWE TATT JO UOISISA [RIU| 8z
[MVZWIONUL LOFLWZZ NUL SABP S'OL | UOHNOSX3 cefiewl JO UL J2A0 (04100 Sui ey ﬂ
LV LIWLZ PaML LVOWOE @n) shep 2| v LYW ol eARr Buppaguia yoieasay M
LOVOWBZ UOW | LOYO L/ L0 UOW SAep 1z adeiaj uogealdde gepel Yoseasay | sz |
Z0/E0/ZL ANL LO/OL/LO UOW SAep Z6 AVILVIN 03 VAVI 2982 | k
ZOELVZL BNL ZOVEQVRO UOW Shep 2 SPUOAA JO JUBWAUYAA pUB JS3} jeuld >4
TVEDVIO MY ZOVZONSZ UOW SABP G PlOM Wninpuag 2)2a1) 2z |
ZUZVZZMd TOiZIIZL ANl sheps PUHOM S[PRID SUOMMAN 218310 Tz |
ZOVZO/LL UOW | ZOVLOVBO Papd, SAep §1 PUOM 4 31340 M
ZVIVB0 BN | LVZWOL UOW sAep g9 PO Buyoel 47Ty 11D Bl
WVZWOLUOW LOrLW9L 1Y shepal pLHom adAjolid ajeald H
WVLWSL MY LOIOWOE @nL sAepggl Buljapow THEA Yim Juaioyosd awoaag 2L
VO WEZ UOW | LOVO W L0 UOW SAep 1z THHA O YIeasay a1 |
Z0/E0/Z1 N1 LO/OW/LO UOW SAep Z6 SPLIOM TWHA & Sl
ZWEQVZLANL ZOVELVPO UOW SAep Sy SPUOA TWHA O} PAOBLISIUI S|ZPOW [04U0D H
TVEQVPO UOW ZOYZOVSZ BNl sAep b |2pow wninpuad ajealn €l
ZIVZOVIZ BNL | ZO/LOKSL PAA SARP 61 [8POW 3P4 SUoMMAN 22D M
TOPLOVG L PAM, | 2OV LOMBO PaML SABP §'G [Bpou 1.4 2jeal) | b1 |
ZOLVE0ENL | LOVZWOL oW Shep 2 [Bpow Burel Yy Qyy 2§eai0 i
LVZWOL UOW | LOFZ WL Yo SAep 0 PO TMA UYA [3pow adAojoad ajepossy H
WVZWL0MS LZWL0 MY sdepo Bupjiom [@pow adAojold F
piansanmne s | WZW0 M LVLWZZ UL sAepZL |apow adAjojold ajeaid 2
i LVLWIZ PAM LOVLWZ0 MY SABR G'EL 3p0W WBJSAS [041U00 Bgesiieal 4oy Seap ajgisead s |
WWLWZOMS LOKL0 oW shep vz | S[BPOW JUINUIS 03I Y2easay 5
_385 any LO/0W/LO UOW SAep Z§ S|2pou [0.JU03 YUNWIS =] -
R R R e R e R e e] e | ws | wena | su se1

[image: image99.jpg]z1014

-y @

Zuo!

uoneuasaid asedald
puIg pue Juld
1084102 pue peal Jooid
podau yeuq
paasbie ainjonis poday
Hoday ajajdwo) -
sfing x14 pue wajsAs §sa)
SjuBUOdWOD BABE JO IS3] [euly
Iaatas @0
adejia g0
juswaUYal 10j03UU0D Jajddy TNEA
10}03UU03 Jajddy TWHA
104ju09 Jajddy
BABP YAk P3JI3ULI0D 308 ISJUI BABL/GEEIN
SSBJO J0]03UU0D gejiel
1aA43S (WY
aoeiap afessaw jaddy Ny
aoejiap abessaw gqefew |y
BUDLOMIBNIT AYT Yoseasay
wswdojanap eaer -
HUIS BB BUISI pue JS3)
uis elep Pappagua wAYT J0 UoisiaA Buuogoung
JUIS BI2P [BIPUI O} PAAUI [Spow 3dAI0j0Id
JUIS BIEP PAPPACWS AT JO UOISIaA [BIJU]
uoNNIaXa gefjew Jo BUIL] 43A0 [04JU0D 3w} [Bay
GvILYIN O eaer Buppaguia Yaieasay
aoepiaU uoneddde qeey Yoleasay
V1LV 03 VAV 338l [
SPlA0AA JO JUSWSULSI pUE JS3) [euly
PHOAN WNiNPUS 3jeai)
PUOAA SJPEID SUOMMEN 3)8a4D
PO §|4 318340
PO Bupjoe ¥y vy 31easd
ploa adAj0jud ageald
Bulapow TWHA Uk JuSoyoud awodag
TEA Ol Yaieasay
SPHOM TTARIA =
SPUOAN TIWHA O} PA0RJISII SISPOW [04U0D
|8poW wnnpuad ajeaid
[3p0W ajpEID SU0MAN 3)eaiD
[2pOU t1 4)840
[epow Bupoel) ¥y avy apeald
PHOM TINNA Yl [apow adAojoad apeioossy
Buppiom [apow adA30104d
|epow adAj0jad aeasd

BROW WaJSAS [04JU0D 3jgeseal 10} Seapl aqIsead

S[3POW JUINWIS O Yoeasay

CEEE2IRIGINIRIRIEIERIERBESIBZBBEEBBSSTREEEEERE

© |= |\
o R e

4]

S|9POW [0.JU0D HUlNWIS =)

4 [mlw

3 e |

s [d[m[w

i ET |

sTiJiJsTaImlw

sTi1JTi1]sTamlw

s 1]

20,924 81

20,994 L1

Z0, 924 +0

20, ver 82

10,920 1 |

10,934 +Z

10,920 21]

10,224 01

SweN ysel

[image: image100.jpg]uoneasald asedald
pul pue g
1934400 pue pEaJ JO0Id
podals yeuq
paaifie aanjonis poday
Hoday aje1dwo) [
sBng x14 pue wajsAs jsa)
sjUauodWod BARP JO §S31 [Buld
Janias @)
aoepa @D
JUaWauyal 10}03uU09 B|ddy TWHA
10393UU02 Jajddy TNNA
04302 J3ddy
BABD UIAA PRJD3ULIND 30BLIBIUI BABL/ TR
SSB(D I0JI3UL0D GeIR
ianias gy
aoepe afessaw jeiddy [Ny
aoeia)U ahessal gqefew Wy
BURMOANBN Y AT Yoieasay
wawdojanap eaer -

JUiS BJRp BUYa puUe Jsa)
uIS elep pappagua AT 10 Uoisiaa Buuogouny
IS B1Ep [EIHUl 0} paXUY [BpowW 3dAJ0j0.d
HUIS BIEP PAPRAGUIS WATT JO UOISI3A [eliul
UoINoaXa Gejjewl J0 BUIL J3A0 (040D Wi} [8ay
B ILYIN 0 BARD Bulppagwa yoleasay
aoepaju uoledljdde qejel Yoleasay

AVILVIN 03 VAVF 39ea)j [

SPl40AM JO JUBWBUYAA pUE }S3] [Buly
Pli0AN WNINpUa 2jeal)
PlA0AA BIPEID SUOMEN BJeal)

2IFS|RB|®

w
-

SIERIBRRICERERIBESEBBEBEIBBITF|ZICNT

PUOM 1|4 938210
pHom Bupioel) 4y vy jeai) 6l
PloA adAjojoid aeald al
Buyiapow TWEA Yuak Jusioloid awodsg 2l
TNHA O Yoieasay al
Hi SPHIOM TWHA =] Sl
SPlOAL WA O} PBORLISII S|3POW [04U0D w1
[Bpow wninpuad agas) £l
[3POW 2[PEID SUOMMAN Sjeal) FAN
[2poW 14 21210 i
[epow Bupioel) Yy avy 21eai) ol
PHOA TWHA YA [apow adAjojoid apeioossy 6
Bupjoa |apow adAjoid 8
|apow adAojold ajeald 2
BROW WalSAS [04JU0D Sjesieal Jo) seap) ajgisead)
Sjapow JUINWIS Ol Yoseasay s
. S[2POLU 010D HUMWIS [¥
ézz sTiTiJsTAmIw]sTaTr]sTA[mIW]sT1JL]sTdmIw]sTa1Ji]sTaImlIw][s[1JiJsTaImIw]s[1T1i]s ——
20, £l 20, Ae 90| Z0, 1y 67 Z0, 4y zZ | Z0, 4y G| Z0, 4y 20| Z0, 4y |10 Z0, e sz | 20, B8N 81 Z0, 2 LL| Z0. 48 $0 20,924 52 |

APPENDIX B: Newton’s cradle output

[image: image101.wmf]

Time

Simulation output of Newton’s cradle with spheres 1 and 5 being initially displaced in opposite directions by 1 radian.

[image: image102.wmf]Simulation output of Newton’s cradle with spheres 1 and 5 being initially

displaced in opposite directions.

Time

Simulation output of Newton’s cradle with sphere 1 initially displaced by 1 radian.

[image: image103.wmf]

Time

Simulation output of Newton’s cradle with spheres 1 and 2 being initially displaced in the same direction by 1 radian.

APPENDIX C: Matlab Code

Interface Development

First timing test: timed.m

% Initialisation

clear all;

hold on;

format long;

packetsize = 1; % length in time of a packet (secs)

stepsize = 0.01; % length of the discrete timesteps (secs)

runtill = 20; % when to end the test (secs)

testtime = 0:packetsize:(runtill-packetsize);

testdata = []; % timing data array

teststart = java.util.Date;

% Carry out the test

for i=0:packetsize:runtill-packetsize

 t = i:stepsize:i+packetsize-stepsize;

 a = cos(5*t) + 3*cos(0.3*t);

 pause(0.05); % simulate calculation time for complex models

 testnow = java.util.Date;

 testdata(i+1) = (testnow.getTime - teststart.getTime)/1000; % store timing data

 plot(t,a); axis([0,runtill,-5,5]); % simulate the network communication

 pause(packetsize);

end

hold off;

% Plot timing results

plot(testtime,testtime,'r-',testtime,testdata,'b--',testtime,testdata-testtime,'g:'); axis([0,runtill,0,runtill]);

xlabel('Simulation timescale');

ylabel('Calculation time');

text(2, 10, 'Actual test performance');

text(10, 8, 'Desired performance');

text(7, 2, 'Lag time');

Second timing test: timed2.m

% Initialisation

clear all;

hold on;

format long;

packetsize = 1; % length in time of a packet (secs)

stepsize = 0.01; % length of the discrete timesteps (secs)

runtill = 20; % when to end the test (secs)

testtime = 0:packetsize:(runtill-packetsize);

testdata = []; % timing data array

teststart = java.util.Date;

% Set the start time

start = java.util.Date;

% Carry out the test

for i=0:packetsize:runtill-packetsize

 t = i:stepsize:i+packetsize-stepsize;

 a = cos(5*t) + 3*cos(0.3*t);

 pause(0.05); % simulate calculation time for complex models

 testnow = java.util.Date;

 testdata(i+1) = (testnow.getTime - teststart.getTime)/1000; % store timing data

 plot(t,a); axis([0,runtill,-5,5]); % simulate the network communication

 now = java.util.Date;

 while now.getTime < start.getTime + (i+1)*1000;

 now = java.util.Date;

 end

end

hold off;

% Plot timing results

plot(testtime,testtime,'r-',testtime,testdata,'b--',testtime,testdata-testtime,'g:'); axis([0,runtill,0,runtill]);

xlabel('Simulation timescale');

ylabel('Calculation time');

text(2, 12, '- - - Actual test performance');

text(10, 8, '----- Desired performance');

text(7, 2, '· · · Lag time');

% Display timing data

testdata

Third timing test: timed3.m

% Initialisation

clear all;

hold on;

format long;

packetsize = 1; % length in time of a packet (secs)

stepsize = 0.01; % length of the discrete timesteps (secs)

runtill = 20; % when to end the test (secs)

testtime = 0:packetsize:(runtill-packetsize);

testdata = []; % timing data array

teststart = java.util.Date;

% Set the start time

start = java.util.Date;

% Carry out the test

for i=0:packetsize:runtill-packetsize

 t = i:stepsize:i+packetsize-stepsize;

 a = cos(5*t) + 3*cos(0.3*t);

 pause(0.05); % simulate calculation time for complex models

 testnow = java.util.Date;

 testdata(i+1) = (testnow.getTime - teststart.getTime)/1000; % store timing data

 plot(t,a); axis([0,runtill,-5,5]); % simulate the network communication

 now = java.util.Date;

 while now.getTime < start.getTime + (i+1)*1000;

 pause(0.001);

 now = java.util.Date;

 end

end

hold off;

% Plot timing results

plot(testtime,testtime,'r-',testtime,testdata,'b--',testtime,testdata-testtime,'g:'); axis([0,runtill,0,runtill]);

xlabel('Simulation timescale');

ylabel('Calculation time');

text(2, 12, '- - - Actual test performance');

text(10, 8, '----- Desired performance');

text(7, 2, '· · · Lag time');

% Display timing data

testdata

Simulink Timing Test

function [sys,x0,str,ts] = delay1(t,x,u,flag)

switch flag,

 %%%%%%%%%%%%%%%%%%

 % Initialization %

 %%%%%%%%%%%%%%%%%%

 % Initialize the states, sample times, and state ordering strings.

 case 0

 [sys,x0,str,ts]=mdlInitializeSizes;

 %%%%%%%%%%%

 % Outputs %

 %%%%%%%%%%%

 % Return the outputs of the S-function block.

 case 3

 sys=mdlOutputs(t,x,u);

 %%%%%%%%%%%%%%%%%%%

 % Unhandled flags %

 %%%%%%%%%%%%%%%%%%%

 % There are no termination tasks (flag=9) to be handled.

 % Also, there are no continuous or discrete states,

 % so flags 1,2, and 4 are not used, so return an emptyu

 % matrix

 case { 1, 2, 4, 9 }

 sys=[];

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 % Unexpected flags (error handling)%

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 % Return an error message for unhandled flag values.

 otherwise

 error(['Unhandled flag = ',num2str(flag)]);

end

%

%===

% mdlInitializeSizes

% Return the sizes, initial conditions, and sample times for the S-function.

%===

%

function [sys,x0,str,ts] = mdlInitializeSizes()

sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = 0;

sizes.NumOutputs = -1; % dynamically sized

sizes.NumInputs = -1; % dynamically sized

sizes.DirFeedthrough = 1; % has direct feedthrough

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

str = [];

x0 = [];

ts = [-1 0]; % inherited sample time

% end mdlInitializeSizes

%

%===

% mdlOutputs

% Return the output vector for the S-function

%===

%

function sys = mdlOutputs(t,x,u)

persistent start;

persistent times; % datalogging

now = java.util.Date;

if t == 0

 start = java.util.Date;

elseif mod(t, 1) == 0

 endTime = start.getTime + t*1000;

 while now.getTime < endTime

 pause(0.001);

 now = java.util.Date;

 end

 temp = java.util.Date;

 times(t) = temp.getTime - start.getTime;

end

if mod(t,10) == 0

 times

end

sys = u;

% end mdlOutputs

APPENDIX D: Java Platforms

Table C.1 Java Platforms

	OS
	CPU
	Company/Organization
	Ported Technology

	Windows 95/98/NT/2000/XP
	Intel
	Sun, Microsoft, IBM
	JDK

	Solaris
	SPARC/Intel
	Sun
	JDK

	AIX
	
	IBM
	JDK

	DYNIX/ptx 4.4.2 forward
	Intel
	Sequent Computer Systems
	JDK

	HP-UX
	
	Hewlett-Packard
	JDK

	IRIX
	
	Silicon Graphics
	JDK

	Linux
	i386, Alpha, Power PC, SPARC
	Blackdown.org
	JDK

	MacOS
	
	Apple
	JDK, JRE

	NetWare
	
	Novell
	JNDI, NSI, JIT and Java Virtual Machine

	OpenVMS
	Alpha
	Compaq Computer Corporation
	JDK

	OS/2
	i386
	IBM
	JDK

	OS/390, OS/400
	
	IBM
	JDK

	DG/UX 4.2
	
	Data General Corporation
	JDK

	SCO
	i386
	SCO
	JDK

	Tru64 UNIX
	Alpha
	Compaq Computer Corporation
	JDK

	UnixWare
	i386
	SCO
	JDK

	VxWorks
	
	Wind River Systems
	Java Virtual Machine

	Windows NT, Digital UNIX, Digital OpenVMS
	Alpha
	Digital Equipment Corportation
	JRE

	FreeBSD
	i386
	The FreeBSD Project
	JDK

	NetBSD
	i386
	Quick.com.au
	JDK

	Reliant Unix
	Mips
	Siemens Nixdorf Informationssysteme AG
	JDK

See also: http://java.sun.com/cgi-bin/java-ports.cgi
APPENDIX E: System User Manual

Web client instructions:

To view a running control simulation:

Open a web browser window and type the URL of the simulation into the address bar.

Observe the control simulation

Change simulation parameters by altering the values in the text boxes and pressing the “apply” button

A simulation may be restarted by pressing the “stop” button and then pressing “restart” button which replaces it. Any changes to parameters take effect when pressing either of these buttons, “apply” does not need to be pressed when restarting. The “cancel” button reverts any changed parameters back to their last state.

Local Server instructions:

To run the server, the Matlab client and an applet client on the same machine:

Make sure a JRE of version 1.2 or later is installed and the PATH environment variable is set to include the “path-to/jre/bin” directory.

Execute the “path-to/gdp/go.bat” file.

Start Matlab 6.1 with Simulink and set the working directory to “path-to/gdp/matlab/model-name”, where “model-name” refers to the desired control simulation directory.

Open and run the “.mdl” file.

Open the “path-to/gdp/webpages/index.html” file and select the running Simulink model name.

Because of Microsoft’s non-standard Java implementation, this local serving will only work with Sun’s JRE. To install Sun’s JRE in a web browser click the “Download Now” button in the web page that appears after step 5, and follow the on screen instructions. This is only required if “loading simulation variables” appears on the right-hand side of the screen for longer than a few seconds, or if the applets do not load at all.

Two-Tier deployment instructions:

To run the server and the Matlab client from the same machine, and allow other users on the same network to view a running simulation:

Make sure a full Java Development Kit is installed. Set the JAVA_HOME environment variable to “path-to/jdk/”, the PATH variable to include “path-to/jdk/bin” and the TOMCAT_HOME variable to “path-to/gdp/jakarta-tomcat”.

Follow steps 2 – 4 of the “Local Server instructions”.

Execute “path-to/gdp/jakarta-tomcat/bin/startup.bat” script.

Open a web browser window and type “http://machine-name/gdp” into the address bar, where “machine-name” refers to the hostname of the current machine.

Follow the “Web Client Instructions”.

Three-Tier deployment instructions:

To set the system up for optimum performance and access by anyone on the Internet:

On the server machine:

 Make sure a JRE of version 1.2 or later is installed and the PATH environment variable is set to include the “path-to/jre/bin” directory.

Make sure the “path-to/gdp/webpages” directory is mapped to the server’s web server.

Make sure that port 4097 is open on the firewall.

Execute the “path-to/gdp/go.bat” file, if the server is running Windows, or “path-to/gdp/go.sh”, if the server is running UNIX.

On the Matlab client machine:

 Follow steps 1 – 3 of the “Local Server instructions”.

Open the “datasink” and “datasource” files and change the value of the MatlabConnector constructor from “127.0.0.1” to the hostname or IP-Address of the server machine.

Open and run the “.mdl” file.

On web client machines:

Follow the “Web Client instructions”, using the server machine’s URL as the simulation’s address.

APPENDIX F: Table of Contents for the CD-ROM

Directory Outline

	/gdp/jakarta-tomcat
	A web server to host the system for remote access

	/gdp/matlab
	The Matlab/Simulink models of the working system and the Simulink wrapper files

	/gdp/report
	A Microsoft Word file of this report

	/gdp/vrc
	The sourcecode for the Java Client/Server system

	/gdp/webfull
	A directory of external packages: Only used for the purpose of recompilation

	/gdp/webpages
	HTML files for each of the models containing the VRML world and a the compiled Java applets

Complete CD-ROM Table of Contents

/gdp/jakarta-tomcat/bin

/gdp/jakarta-tomcat/classes

/gdp/jakarta-tomcat/common

/gdp/jakarta-tomcat/conf

/gdp/jakarta-tomcat/jasper

/gdp/jakarta-tomcat/lib

/gdp/jakarta-tomcat/logs

/gdp/jakarta-tomcat/server

/gdp/jakarta-tomcat/webapps

/gdp/jakarta-tomcat/work

/gdp/jakarta-tomcat/common/classes

/gdp/jakarta-tomcat/common/lib

/gdp/jakarta-tomcat/server/classes

/gdp/jakarta-tomcat/server/lib

/gdp/jakarta-tomcat/webapps/gdp

/gdp/jakarta-tomcat/webapps/ROOT

/gdp/jakarta-tomcat/webapps/gdp/bb

/gdp/jakarta-tomcat/webapps/gdp/f14

/gdp/jakarta-tomcat/webapps/gdp/nc

/gdp/jakarta-tomcat/webapps/gdp/pendulum

/gdp/jakarta-tomcat/webapps/gdp/radar

/gdp/jakarta-tomcat/webapps/ROOT/WEB-INF

/gdp/matlab/ball

/gdp/matlab/F14

/gdp/matlab/newton

/gdp/matlab/pendulum

/gdp/matlab/Radar

/gdp/matlab/ball/com

/gdp/matlab/ball/vrc

/gdp/matlab/ball/com/ibm

/gdp/matlab/ball/com/ibm/jcb

/gdp/matlab/ball/com/ibm/jcbimpl

/gdp/matlab/ball/com/ibm/jcb/proxies

/gdp/matlab/ball/com/ibm/jcb/resources

/gdp/matlab/ball/com/ibm/jcb/util

/gdp/matlab/ball/com/ibm/jcbimpl/transport

/gdp/matlab/ball/vrc/interfaces

/gdp/matlab/ball/vrc/structure

/gdp/matlab/F14/com

/gdp/matlab/F14/vrc

/gdp/matlab/F14/com/ibm

/gdp/matlab/F14/com/ibm/jcb

/gdp/matlab/F14/com/ibm/jcbimpl

/gdp/matlab/F14/com/ibm/jcb/proxies

/gdp/matlab/F14/com/ibm/jcb/resources

/gdp/matlab/F14/com/ibm/jcb/util

/gdp/matlab/F14/com/ibm/jcbimpl/transport

/gdp/matlab/F14/vrc/interfaces

/gdp/matlab/F14/vrc/structure

/gdp/matlab/newton/com

/gdp/matlab/newton/vrc

/gdp/matlab/newton/com/ibm

/gdp/matlab/newton/com/ibm/jcb

/gdp/matlab/newton/com/ibm/jcbimpl

/gdp/matlab/newton/com/ibm/jcb/proxies

/gdp/matlab/newton/com/ibm/jcb/resources

/gdp/matlab/newton/com/ibm/jcb/util

/gdp/matlab/newton/com/ibm/jcbimpl/transport

/gdp/matlab/newton/vrc/interfaces

/gdp/matlab/newton/vrc/structure

/gdp/matlab/pendulum/com

/gdp/matlab/pendulum/vrc

/gdp/matlab/pendulum/com/ibm

/gdp/matlab/pendulum/com/ibm/jcb

/gdp/matlab/pendulum/com/ibm/jcbimpl

/gdp/matlab/pendulum/com/ibm/jcb/proxies

/gdp/matlab/pendulum/com/ibm/jcb/resources

/gdp/matlab/pendulum/com/ibm/jcb/util

/gdp/matlab/pendulum/com/ibm/jcbimpl/transport

/gdp/matlab/pendulum/vrc/interfaces

/gdp/matlab/pendulum/vrc/structure

/gdp/matlab/Radar/com

/gdp/matlab/Radar/vrc

/gdp/matlab/Radar/com/ibm

/gdp/matlab/Radar/com/ibm/jcb

/gdp/matlab/Radar/com/ibm/jcbimpl

/gdp/matlab/Radar/com/ibm/jcb/proxies

/gdp/matlab/Radar/com/ibm/jcb/resources

/gdp/matlab/Radar/com/ibm/jcb/util

/gdp/matlab/Radar/com/ibm/jcbimpl/transport

/gdp/matlab/Radar/vrc/interfaces

/gdp/matlab/Radar/vrc/structure

/gdp/vrc/interfaces

/gdp/vrc/structure

/gdp/webfull/blaxxun

/gdp/webfull/bx3dExt

/gdp/webfull/com

/gdp/webfull/vrc

/gdp/webfull/x3d

/gdp/webfull/bx3dExt/tools

/gdp/webfull/com/ibm

/gdp/webfull/com/ibm/jcb

/gdp/webfull/com/ibm/jcbimpl

/gdp/webfull/com/ibm/jcb/proxies

/gdp/webfull/com/ibm/jcb/resources

/gdp/webfull/com/ibm/jcb/util

/gdp/webfull/com/ibm/jcbimpl/transport

/gdp/webfull/vrc/interfaces

/gdp/webfull/vrc/structure

/gdp/webpages/gdp

/gdp/webpages/multipleFiles

/gdp/webpages/singleFiles

/gdp/webpages/gdp/bb

/gdp/webpages/gdp/f14

/gdp/webpages/gdp/nc

/gdp/webpages/gdp/pendulum

/gdp/webpages/gdp/radar

/gdp/webpages/multipleFiles/bb

/gdp/webpages/multipleFiles/f14

/gdp/webpages/multipleFiles/nc

/gdp/webpages/multipleFiles/pendulum

/gdp/webpages/multipleFiles/radar

/gdp/webpages/singleFiles/bb

/gdp/webpages/singleFiles/f14

/gdp/webpages/singleFiles/nc

/gdp/webpages/singleFiles/pendulum

/gdp/webpages/singleFiles/radar

APPENDIX G: Agendas and minutes from the formal meetings

GDP Progress Meeting

AGENDA

Venue

Date

Lanchester Room 4027

 Monday 1st October 2001

1.0
Welcome & Apologies

2.0
Introduction to the Project

3.0
Team questions for supervisor to answer

4.0
Any Other Business

5.0
Date of next meeting

GDP Progress Meeting

MINUTES

Venue

Date

Lanchester Room 4027

Monday 1st October 2001

1.
Welcome & Apologies

1.1.
Present: Dr Sandor Veres, Clara Cardoso, Ian Farmer, Julian Seidenberg

1.2.
Apologies: Sam Hopper

2.
Introduction to the Project

2.1.
Use Simulink to create and simulate control models

2.2.
Create a program in Java similar to the Matlab VR-Toolbox

2.3.
Use VRML to create 3D environments that illustrate the control models

3.
Team questions for supervisor to answer

3.1 Dr. Veres told the team that the project is going to be evaluated by the speed and the interactiveness of the web page and how is the interaction with Matlab routines

4.
Any Other Business

4.1.
A form explaining the project and the team actions is to be handed in week 3

5.
Date of next meeting

5.1.
Friday 5th of October 2001

GDP Progress Meeting

AGENDA

Venue

Date

Lanchester Room 4027

 Friday 5th October 2001

1.0
Welcome & Apologies

2.0
Minutes of last meeting (01/10/01)

2.1
Matters arising from minutes

3.0
Feedback from team – work since last progress meeting (01/10/01)

4.0
Team questions for supervisor to answer

5.0
Supervisor’s comments

6.0
Any Other Business

7.0
Date of next meeting

GDP Progress Meeting

MINUTES

Venue

Date

Lanchester Room 4027

Wednesday 5th October 2001

1.
Welcome & Apologies

1.1.
Present: Dr Sandor Veres, Clara Cardoso, Ian Farmer, Sam Hopper, Julian Seidenberg

2.
Minutes of Last Meeting (01/10/01)

2.1.
The minutes from the previous meeting were distributed and approved

3.
Feedback from team – work since last progress meeting (01/10/01)

3.1.
The team investigated Simulink and Java interaction with Matlab

4.
Team questions for supervisor to answer

4.1 Dr. Veres told the team that they had a budget of £620

Action:

4.1.1.
Use the budget to order Matlab 6.1

5.
Supervisor’s comments

5.1.
Dr. Veres suggested that the team should investigate the possibility of using Linux.

Action:

5.1.1.
The team will investigate the possibility of using Linux.

6.
Any Other Business

6.1.
A form explaining the project and the team actions is to be handed in two weeks time

Action:

6.1.1.
The team will start thinking how to fill the form

7.
Date of next meeting

7.1.
Wednesday 14th November 2001

GDP Progress Meeting

AGENDA

Venue

Date

Lanchester Room 4027

 Wednesday 14th November 2001

1.0
Welcome & Apologies

2.0
Minutes of last meeting (05/10/01)

3.0
Feedback from team – work since last progress meeting (05/10/01)

4.0
Team questions for supervisor to answer

5.0
Supervisor comments

6.0
Any Other Business

7.0 Date of next meeting

GDP Progress Meeting

MINUTES

Venue

Date

Lanchester Room 4027

Wednesday 14th November 2001

1.
Welcome & Apologies

1.1.
Present: Dr Sandor Veres, Clara Cardoso, Ian Farmer, Sam Hopper, Julian Seidenberg, T. Meurers

2.
Minutes of Last Meeting (05/10/01)

2.1.
The minutes from the previous meeting were distributed and approved

3.
Feedback from team – work since last progress meeting (05/10/01)

3.1.
Discussion of Matlab/Java interaction

Action:

3.1.1.
The team decided to implement a dual buffer system. Matlab will compute a short run (e.g. 2 second) of the simulation and send this to the applet displaying the VRML, then wait for these 2 seconds to pass and then compute and transfer the next 2 seconds. The JAVA applet buffers these inputs to compensate for variable Internet quality of service. In the worst case, changes to the "constants" of the Matlab simulation through the client-side interface take effect after 3 seconds. However, in reality these buffering times should be a lot smaller.

3.2.
Main features needed in project. Decided on Simulink Data sink, Simulink data source, VRML browser applet, VRML control applet, JAVA server pass-through, Web-server (Tomcat), Simulink models and VRML worlds.

Action:

Sam will investigate time delays in Matlab.

Clara will investigate 3D modelling and background research on VRML.

Clara, Sam and Ian will find additional control examples that can be

animated.

Ian will investigate embedding Java into Matlab and Simulink

Julian will develop Java server pass-through, applets and web-server.

4.
Team questions for supervisor to answer

4.1 Dr. Veres told the team that the control models used needed do not needed to be developed by the team.

5.
Supervisor’s comments

5.1.
Dr. Veres suggested that the team should draw a time plan.

Action:

5.1.1.
Sam will create a time plan of the remaining work.

5.2.
Dr. Veres suggests investigating Octave for possible use in project.

Action:

5.2.1.
Team to look in www.octave.org

6.
Any Other Business

6.1.
The project needs a second examiner

Action:

6.1.1.
Dr. Veres will assign a second examiner for the project.

6.2.
T. Meurers explains his current project on sound field compensation in a duct system. He has established some Simulink models which could be used by the team.

Action:

6.2.1.
Team will consider implementation of T. Meurers models.

7.
Date of next meeting

Wednesday 28th November 2001

GDP Progress Meeting

AGENDA

Venue

Date

Lanchester Room 4027

 Wednesday 28th November 2001

1.0
Welcome & Apologies

2.0
Minutes of last meeting (14/11/01)

2.1
Matters arising from minutes

3.0
Feedback from team – work since last progress meeting (14/11/01)

4.0
Team questions for supervisor to answer

5.0
Supervisor comments

6.0
Any Other Business

7.0
Date of next meeting

GDP Progress Meeting

MINUTES

Venue

Date

Lanchester Room 4027

Wednesday 28th November 2001

1.
Welcome & Apologies

1.1.
Present: Dr Sandor Veres, Clara Cardoso, Ian Farmer, Sam Hopper, Julian Seidenberg

2.
Minutes of Last Meeting (14/11/01)

2.1.
The minutes from the previous meeting were distributed and approved

3.
Feedback from team – work since last progress meeting (14/11/01)

3.1.
The team informs Dr. Veres which tasks have been assigned within team members

Action:

3.1.1.
Sam will investigate Java/Matlab interface

3.1.2.
Ian will investigate control models using Simulink

3.1.3.
Clara will create 3D illustrations of the control models developed

3.1.4.
Julian will do the Java development

4.
Team questions for supervisor to answer

4.1 The presentation, that the team will have to do, is expected to take 15 to 20mins. Dr. Veres indicates he would like to see a few slides and a demonstration of the programs developed so far.

Action:

4.1.1.
Dr. Veres to confirm a date with Prof. Rogers

4.1.2.
The team to prepare the presentation and to enquire into booking a data projector and a laptop

5.
Supervisor’s comments

5.1.
Dr. Veres informs the team that the second examiner is Prof. Rogers

6.
Any Other Business

6.1.
Dr. Veres informs the team that he will be absent for a week from the 30th November.

7.
Date of next meeting

7.1.
Wednesday 12th December 2001

GDP Progress Meeting

AGENDA

Venue

Date

Lanchester Room 4027

 Wednesday 12th December 2001

1.0
Welcome & Apologies

2.0
Minutes of last meeting (28/11/01)

2.1
Matters arising from minutes

3.0
Team project presentation to supervisor and 2nd Examiner

4.0 Date of next meeting

GDP Progress Meeting

MINUTES

Venue

Date

Lanchester Room 4027

Wednesday 12th December 2001

1.
Welcome & Apologies

1.1.
Present: Dr Sandor Veres, Prof. Rogers, Clara Cardoso, Ian Farmer, Sam Hopper, Julian Seidenberg

2.
Minutes of Last Meeting (28/11/01)

2.1.
The minutes from the previous meeting were distributed and approved

3.
Team project presentation to supervisor and 2nd Examiner

3.1.
The team made the presentation to Dr. Veres and Prof. Rogers

4.
Date of next meeting

Wednesday 16th January 2002

GDP Progress Meeting

AGENDA

Venue

Date

Lanchester Room 4027

 Wednesday 16th January 2002

1.0
Welcome & Apologies

2.0
Minutes of last meeting (12/12/01)

3.0
Feedback from team – work since last progress meeting (12/12/01)

4.0
Team questions for supervisor to answer

5.0
Supervisor comments

6.0
Any Other Business

7.0 Date of next meeting

GDP Progress Meeting

MINUTES

Venue

Date

Lanchester Room 4027

Wednesday 16th January 2002

1.
Welcome & Apologies

1.1.
Present: Dr Sandor Veres, Clara Cardoso, Ian Farmer, Sam Hopper, Julian Seidenberg

2.
Minutes of Last Meeting (12/12/01)

2.1.
The minutes from the previous meeting were distributed and approved

3.
Feedback from team – work since last progress meeting (12/12/01)

3.1.
Ian has examined the Simulink model for the radar tracking system

Action:

3.1.1.
Ian to continue to investigate this and other control models

3.2.
Clara has finished doing the 3D world for the radar tracking system

Action:

3.2.1.
Clara to continue to develop other 3D worlds for other control models

4.
Team questions for supervisor to answer

4.1.
Some of the system features were clarified with Dr Veres:

4.1.1.
The network data transfer is only the positional commands needed to

manipulate VRML structures

4.1.2.
The system bottleneck will be the network bandwidth, not the computation time

5.
Supervisor’s comments

5.1.
Dr. Veres tells the team that they need to choose a main model for the system demonstration, but also have a variety of other models.

5.2.
The team should also look at similar projects for comparison.

6.
Any Other Business

6.1.
Dr. Veres to investigate the possibility of the project having a satellite control model.

7.
Date of next meeting

Thursday 7th March 2002

GDP Progress Meeting

AGENDA

Venue

Date

Lanchester Room 4027

 Thursday 7th March 2002

1.0
Welcome & Apologies

2.0
Minutes of last meeting (16/01/02)

3.0
Feedback from team – work since last progress meeting (16/01/02)

4.0
Any Other Business

5.0 Date of next meeting

GDP Progress Meeting

MINUTES

Venue

Date

Lanchester Room 4027

Thursday 7th March 2002

1.
Welcome & Apologies

1.1.
Present: Dr Sandor Veres, Clara Cardoso, Ian Farmer, Sam Hopper, Julian Seidenberg

2.
Minutes of Last Meeting (16/01/02)

2.1.
The minutes from the previous meeting were distributed and approved

3.
Feedback from team – work since last progress meeting (16/01/02)

3.1.
The team made a presentation of the project progress to Dr. Veres

4.
Any Other Business

4.1.
Dr. Veres and the team decided to perform this same presentation to Prof. Rogers on the next meeting.

5.
Date of next meeting

Thursday 14th March 2002

GDP Progress Meeting

AGENDA

Venue

Date

Lanchester Room 4027

 Thursday 14th March 2002

1.0
Welcome & Apologies

2.0
Minutes of last meeting (07/03/02)

2.1
Matters arising from minutes

3.0 Team project presentation to supervisor and 2nd Examiner

GDP Progress Meeting

MINUTES

Venue

Date

Lanchester Room 4027

Thursday 14th March 2002

1.
Welcome & Apologies

1.1.
Present: Dr Sandor Veres, Prof. Rogers, Clara Cardoso, Ian Farmer, Sam Hopper, Julian Seidenberg

2.
Minutes of Last Meeting (07/03/02)

2.1.
The minutes from the previous meeting were distributed and approved

3.
Team project presentation to supervisor and 2nd Examiner

3.1.
The team made a presentation to Dr. Veres and Prof. Rogers

APPENDIX H: Project Financial Statement

Income

The group was allocated £620 for the project by the Faculty of Engineering and Applied Science.

Expenditure

The majority of the budget was spent on acquiring Simulink 4.1 software. The price of this software is actually £509.95, however since there was another GDP group (GDP56 “Design and Build a Collaborative Control System for Formation Flying of Two Nanosatellites”) interested in using this software, the price was split between the two groups.

Other expenditures were printing and binding and food for the presentations.

	REASON
	AMOUNT
	BALANCE

	Budget
	£620
	£620

	Simulink 4.1
	£254.97
	£365.03

	Printing and Binding
	£156.00 (approx.)
	£209.03

	Presentation
	£30.00 (approx.)
	£179.03

Record start time

Calculate data for current packet

Simulate network transfer of data

Does current time equal start time plus total time for the completed packets?

Increment packet count

No

Yes

Datasource

�Control system model

Datasink

Sphere2

Sphere1

_1080888131.unknown

_1080927820.vsd
text�

Software
Concept�

Requirements
Analysis�

Architectural Design�

�

�

Simulink Interface Wrapper�

System Testing�

Detailed Design�

Coding�

Subsystem Testing�

�

�

�

�

�

�

�

�

�

Matlab Control Models�

Detailed Design�

Coding�

Subsystem Testing�

�

�

�

�

�

3D Worlds�

Detailed Design�

Coding�

Subsystem Testing�

�

�

�

Java Client/Server Subsystem�

Detailed Design�

Coding�

Subsystem Testing�

�

�

�

�

�

�

�

�

Project Completion�

�

_1080928527.vsd
Receive Matlab Data�

Matlab�

To-Server Store�

Package Data�

Receive Packaged Data�

Transmit to Server�

3D Operations�

3D Operations Array�

Timestep Structure 1�

Timestep Structure 2�

Timestep Structure 3�

Matlab #1 Data Store�

Associate Data with Matlab Instances�

Matlab #2 Data Store�

Matlab #3 Data Store�

Timestep Structure 4�

Timestep Structure 5�

Transmit Data to Clients�

Client #1.2 Receive Data�

VRML World (1.1)�

Display Queue (1.1)�

Display Queue (1.2)�

Client #1.1 Receive Data�

Execute 3D Transforms (1.2)�

Execute 3D Transforms (1.1)�

Timestep Structure 6�

Timestep Structure 7.1�

Timestep Structure 8.2�

Timestep Structure 8.1�

Timestep Structure 9.1�

Timestep Structure 9.2�

3D Operations 1.1�

VRML World (1.2)�

3D Operations 1.2�

Matlab #4 Data Store�

Timestep Structure 7.2�

_1080928844.vsd
�

�

�

�

Monitor User Interface�

�

Adjust Constants�

�

Receive Constants�

�

Send Constants�

�

Send Constants *�

Control & Display Applet *�

Server�

Matlab *�

�

Calculate Transform�

�

Pause�

�

Apply Transform to Display Applet�

�

Display Animation�

�

Send Transforms *�

�

Send Transforms�

�

Store Transform�

�

Receive Transforms�

�

�

�

�

�

�

Queue Transforms�

�

Dequeue Single Transform�

�

�

�

�

Receive Transforms�

�

�

�

�

Queue Transforms *�

�

�

Dequeue Transforms *�

�

�

�

�

�

�

�

�

�

Package Transforms�

�

JCB�

JCB�

�

�

�

Apply Constant Changes�

�

Receive Constants�

�

Adjust Constants�

�

�

�

�

�

�

JCB�

JCB�

�

Receive Constants�

�

JCB�

_1080929509.vsd
Matlab Host�

Applet Host�

Server Host�

CBServer�

AppletClient�

MatlabClient�

JCB�

Server Proxy�

Client Proxy�

JCB�

Client Proxy�

Server Proxy�

JCB�

�

�

�

_1080929887.vsd
�

Box sizes with text.
Press <Enter> to start a
new line of text.�

�

�

�

�

�

�

Drag the side handles to change the width of the text block.�

Java Client/Server System�

3D Worlds�

Timing
and Control Wrapper�

Matlab Control Models�

Clara Cardoso�

Ian Farmer�

Sam Hopper�

Julian Seidenberg�

_1080929606.vsd
AppletConnector�

AppletClient�

AppletConnector
ActionListener�

CBServer�

monitor each
other's threads�

3D Transformation�

3D
Transformations�

3D Transformations arrays�

UI Events�

�Constants�
change�

�Constants�
change�

Blaxxun3D
Applet�

Connect�

Translate, Rotate, Scale�

Connect�

Connect�

Queue�

�

�

Control Applet�

_1080929101.vsd
MatlabConnector 2�

MatlabConnector 1�

MatlabClient�

Matlab�

m-file 2�

Static Variables�

m-file 1�

Static Variables�

Simulink�

CBServer�

JCB�

_1080928650.vsd
�

�

�

�

�

�

�

�

�

�

Domain�

��

text�

vrc�

�

vrc.interfaces�

vrc.structure�

�

�

�

�

�

com.ibm.jcb�

blaxxun�

bx3dExt.tools�

x3d�

com.ibm.jcbimpl�

�

�

�

�

�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

Static Structure�

_1080928006.vsd
Matlab 6.1�

Client Computer�

Simulink
Wrapper�

Java Class�

Java Server�

�

�

Web Server�

Control
Simulation�

Java Display Applet�

�

Java Control Applet�

VRML World�

�

Matlab 6.1�

Matlab 6.1�

Client Computer�

Client Computer�

�

_1080928395.vsd
�

Cloud�

Matlab Java Class�

Client Computer�

vrc.AppletConnector.class�

vrc.Server.class�

vrc.Server.class�

vrc.MatlabConnector.class�

Internet�

Web Server�

vrc.Server.class�

vrc.Server.class�

Helper.class�

Helper.class�

Helper.class�

Internet�

Helper.class�

Helper.class�

Helper.class�

Helper.class�

Helper.class�

Matlab Java Class�

Client Computer�

Client Computer�

Matlab Java Class�

_1080927943.vsd
Laptop�

�

Server�

Laptop�

Workstations�

�

�

�

�

�

�

Workstation�

�

Laptops�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

IBM Compatible�

�

�

�

iMac�

Tower box�

Computer�

Laptop�

Matlab &
Simulink�

Client�

Wrapper�

�

�

Server�

3D
World�

 Laptop�

Server�

Workstation�

Workstation�

_1080888790.unknown

_1080888979.unknown

_1080889062.unknown

_1080908089.vsd
Blaxxun3d Applet�

Virtual Reality Control Server�

Java Connection Broker�

VRML World�

Control Applet�

Matlab Connector/Wrapper�

Matlab�

_1080889035.unknown

_1080888913.unknown

_1080888384.unknown

_1080888540.unknown

_1080888297.unknown

_1080886032.doc
[image: image1.png]10

Thiust axes pos

05

il
E00 0 500 1000 1500 2000 2500 300D 3500 4000 4500
Cross axes position

Actual position

Estimated position

_1080887866.unknown

_1080888032.unknown

_1080887754.unknown

_1079849913.doc

After collision

Before collision

v1+

v2+

v2

v1

m1

m2

m2

m1

_1080194230.doc
[image: image1.png][Fgweno2 = 5]
Ele Edt Vew Insert Toos Window Hep
losmavar/pon
Spheret
1
0
! 10 15 Eil 2 Eil
Sphere2
1
0
! 10 15 Eil 2 0
= Sphered
B
0
5
£ 10 15 Eil 2 0
Sphered
1
0
! 10 15 Eil 2 0
Spheres
1
0
4
0 15 E E3 El

Time

_1080709841.unknown

_1080718182.doc
[image: image1.png]-) Pilot G force. =10 xi
SHE|LLL AEBEB

[image: image3.png]) =101 x|
EEIEEEN -

[image: image2.png]) o/
EEIEEEN -

_1080194272.doc
[image: image1.png][Fgweno2 = 5]
Ele Edt Vew Insert Toos Window Hep
losmavar/pon
Spheret
1
0
! 10 15 Eil 2 Eil
Sphere2
1
0
! 10 15 Eil 2 0
= Sphered
B
0
5
£ 10 15 Eil 2 0
Sphered
1
0
! 10 15 Eil 2 0
Spheres
1
0
4
0 15 E E3 El

Simulation output of Newton’s cradle with spheres 1 and 5 being initially displaced in opposite directions.

Time

_1080194309.doc
[image: image1.png][Fgweno2 = 5]
Ele Edt Vew Insert Toos Window Hep
losmavar/pon
Spheret
1
0
! 10 15 Eil 2 Eil
Sphere2
1
0
! 10 15 Eil 2 0
= Sphered
B
0
5
£ 10 15 Eil 2 0
Sphered
1
0
! 10 15 Eil 2 0
Spheres
1
0
4
0 15 E E3 El

Time

_1080023306.vsd
Nodename�

Fieldvalues�

Fieldname�

Fieldvalues�

Fieldvalues�

�

Operation�

Operation�

Operation�

�

Timestep�

Steps�

SequenceNumber�

_1080126666.doc
[image: image1.png]AN

Offsets

_1079871638.vsd
Text Block�

�

�

�

�

�

�

Translation�

Rotation�

Scaling�

_1078818637.doc

mg

R

(

l

T

_1079283177.unknown

_1079779367.unknown

_1078814579.unknown

_1078815013.unknown

_1078814321.unknown

